RESEARCH on PRICING DERIVATIVES BASED ON RISK MEASURES
基于风险度量的衍生品定价研究
基本信息
- 批准号:13440029
- 负责人:
- 金额:$ 7.1万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research focused on the pricing of American or European derivatives in the case where the market is not complete or where there exist frictions such as transaction cost, short sale constraint, tax etc., from view point of Asset Liability Management by using risk measures.First, we did research on coherent risk measures proposed by Artzner, Delbaen, Eber and Heath, which is quite practical for banks. We introduced a new notion, law invariance, and characterized law invariant coherent risk measures.Then we did research on a new effective numerical computation method for pricing derivatives.We gave a rigorous proof of the effectiveness of the method proposed by Longstaff-Schwartz such that the value function is approximated with polynomials by the least square method. We also discussed the bound of this method.We also introduced a new numerical computation method for pricing of European derivatives based on Malliavin calculus applied to stochastic differential equations and on free Lie algebra, and we developed this method. The details are the following. We introduced new notions, m-similar Markov operators and m-L similar random variables, and then we gave flexibility of the approximation methods and studied the algebraic structure of iterated stochastic integrals. Also, we used the Runge-Kutta method which is effective in numerical computation in ordinary differential equations, to construct definite m-similar Markov operators and m-L-similar random variables, and we did research on practical algorithm.
本文主要研究在市场不完全或存在交易成本、卖空销售约束、税收等摩擦的情况下,美国或欧洲衍生品的定价问题。本文首先研究了Artzner、Delbaen、Eber和Heath提出的一致性风险度量方法,该方法对银行具有较强的实用性。引入了律不变性的概念,刻画了律不变性的相干风险测度,研究了衍生品定价的一种新的有效的数值计算方法,并对Longstaff-Schwartz提出的用最小二乘法多项式逼近价值函数的方法的有效性给出了严格的证明.我们还讨论了该方法的界,并基于Malliavin演算应用于随机微分方程和自由李代数,提出了一种新的欧式衍生品定价的数值计算方法,并将该方法加以发展。详情如下。引入了m-相似Markov算子和m-L相似随机变量的概念,给出了逼近方法的灵活性,并研究了迭代随机积分的代数结构。利用常微分方程数值计算中行之有效的Runge-Kutta方法,构造了确定的m-相似Markov算子和m-L-相似随机变量,并对实用算法进行了研究。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshida, Nakahiro: "Conditional expansions and their applications"Stochastic Processes and their Applications. 107. 53-81 (2003)
Yoshida、Nakahiro:“条件展开及其应用”随机过程及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshida, Nakahiro: "Malliavin calculus and martingale expansions"Bull. Sci. math.. 125. 431-456 (2001)
吉田中弘:“Malliavin 演算和鞅展开式”Bull。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
高橋明彦: "モンテカルロフィルタを用いた金利モデルの推定"統計数理. 50・2. (2003)
高桥明彦:“使用蒙特卡罗滤波器的利率模型估计”统计数学50・2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kusuoka, Shigeo: "On a certain Metric on the Space of Pairs of a Random Variable and a Probability Measure"Journal of Mathenatical Sciences University Tokyo. 8. 343-356 (2001)
Kusuoka, Shigeo:“关于随机变量对空间的某个度量和概率测度”东京数学科学大学学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kusuoka, Shigeo: "Laplace Approximations for Diffusion Processes on Torus : Nondegenerate Case"Journal of Mathenatical Sciences University Tokyo. 8. 43-70 (2001)
Kusuoka, Shigeo:“环面扩散过程的拉普拉斯近似:非简并情况”东京数学科学大学学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUSUOKA Shigeo其他文献
A Remark on Malliavin calculus: Uniform Estimate and Localization
关于 Malliavin 微积分的评论:统一估计和定位
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kusuoka Shigeo S.Kusuoka;M.Maruyama;KUSUOKA Shigeo;KUSUOKA Shigeo;Kusuoka Shigeo - 通讯作者:
Kusuoka Shigeo
Classical mechanical model of Brownian motion with one particle coupled to a random wave field
一个粒子与随机波场耦合的布朗运动经典力学模型
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kusuoka Shigeo S.Kusuoka;M.Maruyama;KUSUOKA Shigeo;KUSUOKA Shigeo - 通讯作者:
KUSUOKA Shigeo
KUSUOKA Shigeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUSUOKA Shigeo', 18)}}的其他基金
The Research on precise estimate for the regularity of diffusion Operator of diffusion process with absorbed boundary condition and Its application
吸收边界条件下扩散过程扩散算子规律性精确估计及其应用研究
- 批准号:
22540174 - 财政年份:2010
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on multi-period Value Measure and Finance-Actuary
多期价值计量与财务精算研究
- 批准号:
17340023 - 财政年份:2005
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic Model of Floating Interest rate and positive research
浮动利率随机模型及实证研究
- 批准号:
09440074 - 财政年份:1997
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on differential operators in infinite dimensional spaces with symmetry
具有对称性的无限维空间微分算子研究
- 批准号:
06452014 - 财政年份:1994
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Unravelling the structural rules of antiperovskites and their derivatives
揭示反钙钛矿及其衍生物的结构规则
- 批准号:
23K23045 - 财政年份:2024
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nitrosation and Nitration Reactions of the Radical Cations of Guanine, 8-Oxoguanine and their Derivatives by NOx: Radical-radical Interactions at Multiple Electron Configurations
鸟嘌呤、8-氧代鸟嘌呤及其衍生物的自由基阳离子与 NOx 的亚硝化和硝化反应:多电子构型下的自由基-自由基相互作用
- 批准号:
2350109 - 财政年份:2024
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
Support for the effective introduction and use of teaching portfolios and their derivatives
支持教学档案及其衍生品的有效引入和使用
- 批准号:
23H00977 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of self-colored biomass plastics composed of only cellulose derivatives
仅由纤维素衍生物组成的自着色生物质塑料的开发
- 批准号:
23K13998 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hexagonal Perovskite Derivatives for Next-Generation Ceramic Fuel Cells
用于下一代陶瓷燃料电池的六方钙钛矿衍生物
- 批准号:
EP/X010422/1 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Research Grant
Sequencing the Mono-Methylated Derivatives of Cytidine
胞苷单甲基化衍生物的测序
- 批准号:
10581093 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Metallo-Porphyrin Carbon nanocomposite: Emerging Material for Biomass to Energy and Fue l derivatives
金属卟啉碳纳米复合材料:用于生物质能源和燃料衍生物的新兴材料
- 批准号:
22KF0155 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of synthetic derivatives with reduced lipophilicity as candidate potentiators towards better treatment alternatives for Cystic Fibrosis
分析亲脂性降低的合成衍生物作为候选增效剂,以获得更好的囊性纤维化治疗替代方案
- 批准号:
481159 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Study on entropy of gravitational theory with higher derivatives
高阶导数引力理论熵的研究
- 批准号:
23K03422 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation and function of subcellular RNA localization in neural crest cells and their derivatives
神经嵴细胞及其衍生物亚细胞RNA定位的调控和功能
- 批准号:
10739280 - 财政年份:2023
- 资助金额:
$ 7.1万 - 项目类别: