Research on differential operators in infinite dimensional spaces with symmetry

具有对称性的无限维空间微分算子研究

基本信息

  • 批准号:
    06452014
  • 负责人:
  • 金额:
    $ 3.39万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

The object of this research was differential operators in infinite dimensional spaces, especially ones with symmetry. We had a progess in the research on holomorphic functions on complex Wiener spaces from viewpoint of stochastic analysis and in the research on asymptotics of fundamental solutions of heat equations with boundary conditions.There have been some works on holomorphic functions in complex Wiener spaces. But all of them handled holomorphic functions defined in the whole space only. So these works did not make clear the holomorphicity as a local property. Since the aim of this research is to establish analysis on Wiener manifolds, we really need the localization of the concepts. We had a big progress in the localization of the notion of holomorphicity and skelton. The skelton of holomorphic functions is holomorphic functions in the Cameron-Martin space associated the original holomorphic functions. The existence of the skelton for holomorphic functions defined on the whole c … More omplex Wiener space was shown by Prof.Sugita in Kyushu University. But nothing is known about the skelton for holomorphic functions defined in subdomains. In this research we showed that if the subdomain is given by a positive domain of a good function, then there exists the skelton of holomorphic functions defined in the domain and the corespondance of skelton and holomorphic functions is one-to-one. Combining this result with known results, we can see that the Dolbeault cohomology coincides with the Cech cohomology of the sheaf of holomorphic functions in the domain. We hope that this result plays an important role in complex analysis in infinite dimensional spaces.We also obtained the precise estimates on the asymptotic behavior of the fundamental solution for the heat equation with Dirichlet or Neumann conditions in the outside of strictly convex domains with smooth boundaries. We obtained this result by representing the fundamental solutions by the Wiener measure and by using the symmetry. We did not expect such a result, but we obtained it as a by-product. Less
本文的研究对象是无限维空间中的微分算子,特别是具有对称性的微分算子。我们从随机分析的角度研究了复Wiener空间上的全纯函数,研究了带边界条件的热方程基本解的渐近性,并对复Wiener空间上的全纯函数进行了一些研究。但它们都只处理定义在整个空间中的全纯函数。因此,这些工作并没有明确地说明全纯是一个局部性质。由于这项研究的目的是建立对Wiener流形的分析,我们确实需要概念的本地化。我们在全纯和Skelton概念的本地化方面取得了很大进展。全纯函数的Skelton是与原始全纯函数相关的Cameron-Martin空间中的全纯函数。定义在全c-…上的全纯函数的Skelton存在性九州大学的Sugita教授展示了更复杂的Wiener空间。但对定义在子域上的全纯函数的Skelton却知之甚少。在这项研究中,我们证明了如果子域是由一个好函数的正域给出的,则存在定义在该域上的全纯函数的Skelton,并且Skelton函数与全纯函数的对应是一一对应的。将这一结果与已有结果相结合,可以看出Dolbeault上同调与区域上全纯函数束的Cech上同调一致。我们希望这一结果能在无限维空间的复分析中起到重要的作用。我们还得到了具有Dirichlet或Neumann条件的热方程的基本解在具有光滑边界的严格凸域外的渐近行为的精确估计。我们通过用Wiener测度表示基本解并利用对称性得到了这一结果。我们没有想到会有这样的结果,但我们是作为副产品获得的。较少

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.OSADA: "An invariance principle for non-symmetric Markov process and reflectig diffusions in random domains" Probability Theory and Related Fields. 101. 45-63 (1995)
H.OSADA:“随机域中非对称马尔可夫过程和反射扩散的不变性原理”概率论及相关领域。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
提誉志雄: "Global existence and uniqueness of enegy solutions for the Maxwell-Schrodinger equations" Hokkaido Mathematical Journal. 24. 617-639 (1995)
Shio Hokkaido:“麦克斯韦-薛定谔方程能量解的全局存在性和唯一性”北海道数学杂志 24. 617-639 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kusuoka: "Limit theorem on option replication with transaction costs" Annals of Applied Probability. 5(発表予定). (1995)
S.Kusuoka:“带有交易成本的期权复制的极限定理”,《应用概率年鉴》5(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.KUSUOKA: "Limit theorem on option replication with transaction costs" Annals of Applied Probability. 5. 198-221 (1995)
S.KUSUOKA:“带有交易成本的期权复制的极限定理”《应用概率年鉴》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.TSUTSUMI: "Global existence and uniqueness of energy solutions for the Maxwell Scrodinger equations" Hokkaido Mathematical Journal. 24. 617-639 (1995)
Y.TSUTSUMI:“麦克斯韦·斯克罗丁格方程能量解的全局存在性和唯一性”北海道数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUSUOKA Shigeo其他文献

A Remark on Malliavin calculus: Uniform Estimate and Localization
关于 Malliavin 微积分的评论:统一估计和定位
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kusuoka Shigeo S.Kusuoka;M.Maruyama;KUSUOKA Shigeo;KUSUOKA Shigeo;Kusuoka Shigeo
  • 通讯作者:
    Kusuoka Shigeo
Classical mechanical model of Brownian motion with one particle coupled to a random wave field
一个粒子与随机波场耦合的布朗运动经典力学模型

KUSUOKA Shigeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUSUOKA Shigeo', 18)}}的其他基金

The Research on precise estimate for the regularity of diffusion Operator of diffusion process with absorbed boundary condition and Its application
吸收边界条件下扩散过程扩散算子规律性精确估计及其应用研究
  • 批准号:
    22540174
  • 财政年份:
    2010
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on multi-period Value Measure and Finance-Actuary
多期价值计量与财务精算研究
  • 批准号:
    17340023
  • 财政年份:
    2005
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RESEARCH on PRICING DERIVATIVES BASED ON RISK MEASURES
基于风险度量的衍生品定价研究
  • 批准号:
    13440029
  • 财政年份:
    2001
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic Model of Floating Interest rate and positive research
浮动利率随机模型及实证研究
  • 批准号:
    09440074
  • 财政年份:
    1997
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
  • 批准号:
    2307729
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
Conference: Frontiers in Stochastic Analysis
会议:随机分析前沿
  • 批准号:
    2247369
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
Conference: Workshop on Stochastic Analysis, Random Fields, and Applications
会议:随机分析、随机场和应用研讨会
  • 批准号:
    2309847
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
  • 批准号:
    2311306
  • 财政年份:
    2023
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
Dirichlet Forms and Stochastic Analysis
狄利克雷形式和随机分析
  • 批准号:
    RGPIN-2018-04394
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Discovery Grants Program - Individual
Interactions in Queues: A Stochastic Analysis
队列中的交互:随机分析
  • 批准号:
    2206286
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Standard Grant
Stochastic Processes and Stochastic Analysis on Disordered Media
无序介质的随机过程和随机分析
  • 批准号:
    22H00099
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic Analysis of Sea-Surface Wind Probability Distribution Modulations by Tropical Modes of Large-Scale Climate Variability
大尺度气候变率热带模态对海面风概率分布调制的随机分析
  • 批准号:
    575569-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.39万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了