Mathematical Analysis to Nonlinear Partial Differential Equations in Mathematical Science and Its Applications

数学科学中非线性偏微分方程的数学分析及其应用

基本信息

  • 批准号:
    13440053
  • 负责人:
  • 金额:
    $ 7.23万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

We have established the quantized blowup mechanism for the non-equilibrium mean field of many self interacting. First, we formulate the equilibrium state as a nonlinear eigenvalue problem with non-local tern. Then, the above mechanism is observed in this level, and thus, the problem arises as a story of nolinear quantum mechanics. We have settled down this long standing problem from the study of the weak solution arising in the backward self similar transformation, employing the method of second moment and forward self similar transformation. Furthermore, we observed that the type I blowup point has high emergence in the sense of Kauffman. To examine actual existence of such a blowup point, we evolved a numerical scheme provided with the conservation of mass, decrease of the fee energy, and the positivity of the solution. Next, we noticed that thus equilibrium state shares the same mathematical structure in the problem of self dual gauge field theory concerned with the super-conducting … More or the string theory. In use of the mathematical technique developed in the study of chemotaxis, such as the compensated compactness via the symmetiization or the theory of dual variation, first, we clarified the blowup mechanism in the Abelian-Higgs theory with vortices, in particular, quantization shift and the location of the blowup points. Next, we apply the method to SU (3)Toda system and obtained the saddle type solution. Furthermore, we constructed the periodic solution in Chern-Simons-Higgs theory, in use of the gluing method of Nolasco. From the view point of the formation of the field, we took up the system of tumour growth and obtained the solution provided with the profile expected in mathematics in medicine, globally in tune. To study other mean field theories following the story of nonlinear quantum mechanics, we provided the general theory of dual variation, and applied the study on the Euler-Poisson equation concerning the formation of nebula, and the phase separation model. of Penrose-Fife. To solve many under determined problems, we proposed the method of parallel optimization, developed the technique of clustering, and applied it to the data analysis of magnetoencephalography. We studied the profile of the interface between different media or in the. context of the free boundary problem such as the interface vanishing in the Maxwell system or the Stokes system and the boundary trial method for the problem of filtration. Less
建立了多个自相互作用非平衡平均场的量子化爆破机制。首先,我们将平衡态表示为一个非局部项的非线性特征值问题。然后,在这个水平上观察到上述机制,因此,问题作为非线性量子力学的故事出现。利用二阶矩方法和前向自相似变换,研究了后向自相似变换中的弱解,解决了这一长期存在的问题.此外,我们还观察到第一类爆破点在Kauffman意义下具有高突现性。为了检验这样一个爆破点的实际存在性,我们发展了一个数值方案,该方案提供了质量守恒、能量减少和解的正性。其次,我们注意到,这样的平衡态在与超导有关的自对偶规范场论问题中具有相同的数学结构 ...更多信息 或者弦理论利用在趋化性研究中发展起来的数学方法,如通过对称化或对偶变分理论得到的补偿紧性,我们首先阐明了有涡旋的Abelian-Higgs理论中的爆破机制,特别是量子化位移和爆破点的位置。其次,我们将该方法应用于SU(3)户田系统,得到了鞍型解。在此基础上,利用Nolasco的胶合方法构造了Chern-Simons-Higgs理论的周期解.从场的形成的观点来看,我们研究了肿瘤生长的系统,并获得了具有医学数学中预期的轮廓的解决方案,全球一致。为了研究非线性量子力学之后的其他平均场理论,我们给出了对偶变分的一般理论,并将其应用于研究与星云形成有关的Euler-Poisson方程和相分离模型。彭罗斯-法夫为了解决许多不确定性问题,我们提出了并行优化的方法,发展了聚类技术,并将其应用于脑磁图数据分析。我们研究了不同介质之间的界面轮廓,或在不同的介质中。本文介绍了自由边界问题(如麦克斯韦系统或Stokes系统中的界面消失问题)的背景以及渗流问题的边界试探法。少

项目成果

期刊论文数量(154)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Suzuki: "Existence of the non-topological condensate in self-dual Chern-Simons gauge theory"Advances in Differential Equations. (印刷中).
T.Suzuki:“自对偶陈-西蒙斯规范理论中非拓扑凝聚的存在”微分方程进展(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Suzuki: "Mass normalization of collapses in the theory of self-interacting particles"Advances in Mathematical Science and Applications. 13. 611-623 (2003)
T.Suzuki:“自相互作用粒子理论中塌缩的质量归一化”数学科学与应用进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kubo, A.: "Study on the integral equation arising in electorencephalography"Adv.Math.Sci.. Appl.13. 273-255 (2003)
Kubo, A.:“脑电图学中出现的积分方程的研究”Adv.Math.Sci..Appl.13。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Suzuki: "Existence of the non-topological condensate in self-dual Chern-Simons gauge theory"Advances in Differential Equations. (発表予定).
T.Suzuki:“自对偶陈-西蒙斯规范理论中非拓扑凝聚的存在”微分方程进展(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Naito, T.Suzuki, K.Yoshida: "Self-similar solutions to a parabolic system modelling chemotaxis"J.Differential Equations. 184. 386-421 (2002)
Y.Naito、T.Suzuki、K.Yoshida:“模拟趋化性的抛物线系统的自相似解”J.微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Takashi其他文献

SUZUKI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Takashi', 18)}}的其他基金

Possible growth signal transduction between Th17 cells and breast cancer cells
Th17细胞和乳腺癌细胞之间可能的生长信号转导
  • 批准号:
    19K09065
  • 财政年份:
    2019
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyses on multiple factors related to evaluation of antioxidant function of northern berries
北方浆果抗氧化功能评价的多因素分析
  • 批准号:
    25292017
  • 财政年份:
    2013
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and publicizing of the simple and low-priced drop-sizing system for dispersive two-phase flows utilizing an image sensor
利用图像传感器开发并宣传用于分散两相流的简单且低成本的液滴分级系统
  • 批准号:
    25420116
  • 财政年份:
    2013
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-invasive quantitative in vivo optical imaging of cerebral blood flow and metabolism
脑血流和代谢的无创定量体内光学成像
  • 批准号:
    25870370
  • 财政年份:
    2013
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on a system supporting visually impaired students in learning science and image-creation of scientific phenomena
支持视障学生学习科学和科学现象形象创作的系统研究
  • 批准号:
    24501163
  • 财政年份:
    2012
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The research of acoustic diagnosis and noninvasive therapy for intractable pneumothorax
顽固性气胸的声学诊断及无创治疗研究
  • 批准号:
    23659307
  • 财政年份:
    2011
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research on the rapid measurement of stability of a refrigerant having low global warming potential
低温室效应制冷剂稳定性快速测量研究
  • 批准号:
    22510094
  • 财政年份:
    2010
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of sex hormone actions in noninvasive breast carcinoma
性激素在非浸润性乳腺癌中的作用分析
  • 批准号:
    22590305
  • 财政年份:
    2010
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perspectives on the Chinese Political Regime on Taisho Period
大正时期中国政治体制透视
  • 批准号:
    20730110
  • 财政年份:
    2008
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis for nonlinear critical phenomena described by mean field equations
平均场方程描述的非线性临界现象分析
  • 批准号:
    20340034
  • 财政年份:
    2008
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了