Development of a high-speed image-understanding system designed directly from image data

开发直接根据图像数据设计的高速图像理解系统

基本信息

  • 批准号:
    13450163
  • 负责人:
  • 金额:
    $ 4.29万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

The goal of this project is to realize a high-speed image-understanding system that has not been realized under the conventional technologies. In order to achieve the system, we implement the circuits designed directly from the images onto the VLSIs. And we apply this design approach to the "Parzen Window Method" and the "Probabilistic Neural Network Method". In both methods, the functions constructed using a great number of sample images are used, and the functions are directly designed from the image sample data. Because of this data-direct-implementation, the functions are calculated much faster than those used in the conventional approachesThe prototype system was established using reconfigurable LSIs (FPGAs) and following were obtained1)Window functions in the Parzen Window Method were optimized using the GA (genetic algorithm). High recognition accuracy was obtained with the window functions in the face recognition problem2)The proposed idea of the data-direct-implementation was efficiently applied not only to the image recognition but to the sonar-spectrum recognition3)The image-understanding system based on the "Probabilistic Neural Network Method" was developed and is connected with a PC. 'The system was effectively and precisely evaluated using the PC. The PC was also used to apply the principal component analysis to the outputs from the system in order to improve the recognition accuracy
本课题的目标是实现传统技术无法实现的高速图像理解系统。为了实现该系统,我们将设计的电路直接从图像实现到vlsi上。并将这种设计方法应用到“Parzen窗口法”和“概率神经网络法”中。这两种方法都使用了由大量样本图像构造的函数,并直接从图像样本数据中设计函数。由于这种数据直接实现,函数的计算速度比传统方法快得多。使用可重构的fpga建立了原型系统,并获得了以下结果:1)使用GA(遗传算法)优化了Parzen窗口方法中的窗口函数。利用窗口函数在人脸识别问题中获得了较高的识别精度2)提出的数据直接实现的思想不仅有效地应用于图像识别,而且有效地应用于声纳频谱识别3)开发了基于“概率神经网络方法”的图像理解系统,并与PC机连接。使用PC机对该系统进行了有效和精确的评估。为了提高识别精度,还采用主成分分析方法对系统输出进行主成分分析

项目成果

期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Aibe, R.Mizuno, M.Nakamura, M.Yasunaga, I.Yoshihara: "Performance Evaluation System for Probabilistic Neural Network Hardware"Proc.Int'l.Symposium on Artificial Life and Robotics 2003. 471-474 (2003)
N.Aibe、R.Mizuno、M.Nakamura、M.Yasunaga、I.Yoshihara:“概率神经网络硬件的性能评估系统”Proc.Intl.Symposium on Artificial Life and Robotics 2003. 471-474 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Moritoshi Yasunaga, Ikuo Yoshihara, Jung, H.Kim: "The Design of Segmental-Transmission-Line for High-Speed Digital Signals Using Genetic Algorithms, (English papers are listed only.)"Proc.IEEE Congress on Evolutionary Computation (CEC) 2003. Vol.3. 1748-1
Moritoshi Yasunaga、Ikuo Yoshihara、Jung、H.Kim:“The Design of Segmental-Transmission-Line for High-Speed Digital Signals using Genetic Algorithms,(仅列出英文论文。)”Proc.IEEE 进化计算大会(CEC)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Noriyuki Aibe, Moritoshi Yasunaga, Ikuo Yoshihara: "Probabilistic Neural Network Processor for Image Recognition Using Reconfigurable LSIs"Proc.2001 Int'l Symposium on Nonlinear Theory and Its Application. Vol.1. 111-114 (2001)
Noriyuki Aibe、Moritoshi Yasunaga、Ikuo Yoshihara:“使用可重构 LSI 进行图像识别的概率神经网络处理器”Proc.2001 非线性理论及其应用国际研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
安永守利, 吉原郁夫: "パターン認識用進化型ハードウェアシステムの開発-ソナースペクトル信号認識を対象として-"電子情報通信学会論文誌. Vol.J86-D-1,No.1. 1-13 (2003)
Moritoshi Yasunaga、Ikuo Yoshihara:“用于模式识别的进化硬件系统的开发 - 针对声纳频谱信号识别 -”电子、信息和通信工程师学会汇刊,第 1 期。1-。 13 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Moritoshi Yasunaga, Taro Nakamura, Ikuo Yoshihara, Jung H.Kam: "The Kernel-based Pattern Recognition System Designed by Genetic Algorithms"IEICE Transaction on Information and Systems. Vol.E84-D, No.11. 1528-1539 (2001)
Moritoshi Yasunaga、Taro Nakamura、Ikuo Yoshihara、Jung H.Kam:“遗传算法设计的基于内核的模式识别系统”IEICE Transaction on Information and Systems。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YASUNAGA Moritoshi其他文献

YASUNAGA Moritoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YASUNAGA Moritoshi', 18)}}的其他基金

Development of a Low Loss Transmission Line Using Resonance Interconnection
利用谐振互连开发低损耗传输线
  • 批准号:
    26289114
  • 财政年份:
    2014
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of the Genetic Algorithms for ElectromagneticNoise Reduction Traces
遗传算法在电磁降噪迹线中的应用
  • 批准号:
    23650116
  • 财政年份:
    2011
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Transmission Line Technology for Digital LSIs at 30GHz and Its Feasibility Study on Prototyping
30GHz数字LSI传输线技术及其原型可行性研究
  • 批准号:
    21360178
  • 财政年份:
    2009
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neural LSI's Possessing Autonomous Defect Self-repairing Capability
神经LSI具备自主缺陷自我修复能力
  • 批准号:
    10450131
  • 财政年份:
    1998
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Autonomous Repairing Ability in Computers
计算机的自主修复能力
  • 批准号:
    08455185
  • 财政年份:
    1996
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
  • 批准号:
    23H01422
  • 财政年份:
    2023
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spectroscopic high-speed motion picture measurement of sound field with nanometer-order precision
纳米级精度的声场光谱高速运动图像测量
  • 批准号:
    22K18809
  • 财政年份:
    2022
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Efficient computation of motion picture hologram based on video compression approach
基于视频压缩方法的运动图像全息图的高效计算
  • 批准号:
    22K12070
  • 财政年份:
    2022
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automated colour processing of high dynamic range motion picture content
用于高动态范围电影内容的自动色彩处理的机器学习
  • 批准号:
    105064
  • 财政年份:
    2019
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Feasibility Studies
CAREER: A Network Motion Picture Primitive for Network Monitoring and Control
职业:用于网络监视和控制的网络电影原语
  • 批准号:
    1845749
  • 财政年份:
    2019
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Continuing Grant
A Proposal for a Newly Developed Continuous Film Scanner to Extract Information Resources from Small Gauge Motion Picture Films in Critical Situations
新开发的连续胶片扫描仪在危急情况下从小规格电影胶片中提取信息资源的提案
  • 批准号:
    18K12255
  • 财政年份:
    2018
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High-speed lensless multispectral three-dimensional motion-picture imaging method with natural light
自然光高速无透镜多光谱三维运动图像成像方法
  • 批准号:
    18H01456
  • 财政年份:
    2018
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Recording and reconstruction of motion picture of polarization of a femtosecond light pulse propagating microscopic field and its application to observation of ultrafast phenomena
飞秒光脉冲传播微观场偏振运动图像的记录与重建及其在超快现象观测中的应用
  • 批准号:
    17H01062
  • 财政年份:
    2017
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research onDistributed Management Method of Motion Picture with Anonymity
分布式匿名电影管理方法研究
  • 批准号:
    17K01149
  • 财政年份:
    2017
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-spectral, polarization-imaging, and three-dimensional motion-picture digital holographic microscopy and its application to observation of biological specimens
多光谱、偏振成像、三维动态图像数字全息显微镜及其在生物标本观察中的应用
  • 批准号:
    15K17474
  • 财政年份:
    2015
  • 资助金额:
    $ 4.29万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了