Exploring Avatamsaka Game and Other Behaviors under Socila Dilemmas

探索 Socila 困境下的华严游戏和其他行为

基本信息

  • 批准号:
    14580486
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Our research project in general has been arranged for exploring Avatamsaka Game and the related systems under social dilemmas as well as developing some simulation programs on the net-work particularly in the market models associated with dilemma. Note that Avatamsaka game was suggested by Y.Aruka in the previous JSPS project No.10430004(1998-2000). We particularly tried to examine mutation and its effects on agent strategy and fitness in the evolutionary game. We also had an insight on potential pay-offs with unknown mutation, but such a consideration, to our, regret, has not been fully analyzed.Avatamsaka game is the game which can always make any strategy an optimal strategy in terms of Nash equilibrium. In our project, we were interested in the various forms of interaction of players, signal exchanges, player's memory and calculation, and player's mistakes on adopting her strategy when we observed the iterated two-persons games with social dilemmas. If we utilized a fundamental dyn … More amic equation for evolutionary game in terms of Nowak(1993), we could easily analyze a set of the effects of co-evolution, mutation, and action-noise on the solutions by computer simulation. We examine the following three cases: (m=0) Players never have memory on the past history; (m=1) Player only has the opponent's last behavior; (m=2) Players has the last behaviors of both the opponent and herself. We focus on a particular strategy: (1)Never adopt such a strategy that only herself takes loss. (2)Adopt cooperation when player is faced to dilemmas. (3) Adopt cooperation as long as cooperation is held. We usually call such strategy PAVROV. In our context, PAVROV may be chosen by a supposed reasonable player who considers well to persuade her opponent to change her defection to realize mutual cooperation. Thus this type of punishment may be interpreted to be done within compassion. We call PAVROV a Punishment within Compassion(PwithC) in Avatamsaka game. In the case of m=2, as Akiyama showed, it turns out that the strongest strategy is PAVROV, namely, PwithC. The altruistic punishment is also acknowledged in other social dilemma frameworks like in Boyd et al.(2003). Thus our research can contribute the subject of evolution and altruism.In the other research on net-work simulation, we were successful to achieve an Asymmetric Oligopoly Game with Information Guidance on the net work. This result was presented in XV IMGTA Italian Meeting on Game Theory and Applications Urbino, (Italy), July 9-12, 2003. As for Avatamsaka game simulation, also presented in the 13th Annual International Conference, The Society for Chaos Theory in Psychology & Life Sciences, Boston University, Boston, MA, USA, August 8-10, 2003. Less
我们的研究项目一般已安排探索化身游戏和社会困境下的相关系统,以及开发一些网络上的模拟程序,特别是在与困境相关的市场模型。请注意,Avatamentum游戏是由Y.Aruka在之前的JSPS项目No.10430004(1998-2000)中提出的。我们特别试图研究突变及其对进化博弈中代理策略和适应性的影响。我们还对未知突变的潜在收益有了深入的了解,但令人遗憾的是,这样的考虑还没有得到充分的分析。Avatamanti博弈是一种总能使任何策略成为纳什均衡的最优策略的博弈。在我们的项目中,我们感兴趣的是各种形式的互动的球员,信号交换,球员的记忆和计算,以及球员的错误采取她的策略时,我们观察了迭代二人游戏的社会困境。如果我们利用一个基本的动态 ...更多信息 利用Nowak(1993)的演化博弈方程,通过计算机模拟,可以很容易地分析协同演化、变异和行动噪声对解的影响。我们研究了以下三种情况:(m=0)参与者对过去的历史没有记忆;(m=1)参与者只有对手的最后一次行为;(m=2)参与者有对手和自己的最后一次行为。我们专注于一个特定的策略:(1)永远不要采取这样一个策略,只有她自己承担损失。(2)当玩家面临困境时采取合作。(3)只要有合作,就采取合作。我们通常称这种策略为PAVRENT。在我们的背景下,PAVbind可能是由一个假定的合理的参与者选择的,他考虑说服她的对手改变她的背叛,以实现相互合作。因此,这种类型的惩罚可能被解释为在同情中进行。我们称之为Pavataminos游戏中的Companies(PwithC)惩罚。在m=2的情况下,正如Akiyama所展示的那样,最强的策略是PAV,即PwithC。利他主义惩罚在其他社会困境框架中也得到了承认,如Boyd等人。(2003年)的报告。在网络仿真的其他研究中,我们成功地实现了一个具有信息引导的非对称寡占博弈模型。这一结果发表在2003年7月9日至12日在乌尔比诺(意大利)举行的第十五届IMGTA意大利博弈论和应用会议上。至于阿凡达游戏模拟,也在第13届年度国际会议上提出,心理学和生命科学混沌理论学会,波士顿大学,波士顿,MA,美国,2003年8月8日至10日。少

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yuji Aruka: "Formulating Social Interaction in Utility Theory of Economics"Takayasu, H.(ed.), The Application of Econophysics, Springer, Tokyo. 322-329 (2004)
Yuji Aruka:“在经济学的效用理论中制定社会互动”Takayasu, H.(编辑),《经济物理学的应用》,施普林格,东京。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akira Namatame, Naoto Sato, Yukikazu Murakami: "Co-Evolutionary Learning in Strategic Environments"Advance in Simulated Evolution and Learning. 1-25 (2004)
Akira Namatame、Naoto Sato、Yukikazu Murakami:“战略环境中的协同进化学习”模拟进化和学习的进展。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Eizo Akiyama, Yuji Aruka: "The Effect of Agents' Memory on Evolutionary Phenomea-the Avatamsaka Game and Four Types of 2x2 dilemma Games (to be presented WEHIA2004 in Kyoto)"mimeo.
Eizo Akiyama、Yuji Aruka:“特工记忆对进化现象的影响——华严游戏和四种 2x2 困境游戏(将于 WEHIA2004 在京都展出)”油印。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
秋山 英三: "5つのジレンマゲームにおける進化的現象"エージェント合同シンポジウム(JAWS 2003)Proceedings. 103-112 (2003)
Eizo Akiyama:“五种困境游戏中的进化现象”联合代理研讨会(JAWS 2003)会议记录103-112(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小山友介, 大浦宏邦: "所属集団を変更できる社会的ジレンマモデルの計算機実験"シミュレーション&ゲーミング. Vol13, No.2. 169-178 (2003)
Yusuke Koyama,Hirokuni Oura:“允许你改变所属群体的社会困境模型的计算机实验”《模拟与游戏》第 13 卷,第 169-178 期(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARUKA Yuji其他文献

ARUKA Yuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARUKA Yuji', 18)}}的其他基金

HETEROGENEOUS INTERACTIONS, AGENTS RECOGNITIONS, AND SOCIO-DYNAMIC ORDER FORMATION
异质交互、代理识别和社会动态秩序形成
  • 批准号:
    18510134
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordination problems and their experimental designs for their solution : A new experimental approach on the web
协调问题及其解决方案的实验设计:网络上的新实验方法
  • 批准号:
    10430004
  • 财政年份:
    1998
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
  • 批准号:
    22KF0303
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
Bridging spatial and evolutionary game theory: Implications in mathematical oncology
连接空间博弈论和进化博弈论:对数学肿瘤学的影响
  • 批准号:
    EP/W003074/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Fellowship
Evolutionary game theory and population dynamics
进化博弈论和种群动态
  • 批准号:
    2746036
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Studentship
Simultaneous occurrence of explosion and extinction in spatial evolutionary game for rapid movement of population
种群快速流动的空间演化博弈中爆炸与灭绝同时发生
  • 批准号:
    19K03641
  • 财政年份:
    2019
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An evolutionary game approach to social choice problems
解决社会选择问题的进化博弈方法
  • 批准号:
    18K12740
  • 财政年份:
    2018
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamic Evolutionary Game Theory
动态进化博弈论
  • 批准号:
    7822-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Evolutionary game in the social amoeba: Quantification of evolutionary dynamics among interacting diverse cell lineages
社会阿米巴原虫的进化博弈:不同细胞谱系相互作用之间进化动态的量化
  • 批准号:
    16K14805
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Multicriteria Evolutionary Game Dynamics based on Imitative Behaviors of Agents
基于智能体模仿行为的多准则进化博弈动力学
  • 批准号:
    16K06414
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic Evolutionary Game Theory
动态进化博弈论
  • 批准号:
    7822-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了