On-line learning EMG driven Interface and high speed learning and rule generation

在线学习肌电图驱动界面和高速学习和规则生成

基本信息

  • 批准号:
    15300073
  • 负责人:
  • 金额:
    $ 10.62万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

Recently, information terminals such as a cellular phone have been widely used. According to this, industrial standard of radio communication such as Bluetooth has been established. As a result, it would be possible to combine and to perform various interfaces. However, now a day, the device that has various operations of portable machines and tools and can control networks (call "total operation device" for short) has not been provided yet. Moreover, the wristwatch type is preferable in the viewpoint of operationality. Therefore, we investigate ElectroMyoGram (EMG) which is a signal generated from a living body with movement of a subject.First, time series data for EMG is measured by electrodes in the input part. Second, this data is amplified and A/D transform is performed in the signal processing part. Next, this amplified data is converted to Fourier power spectra. Finally, we evaluate various data in the learning-evaluation part.We aim for construction of a high-speed and high-acc … More urate EMG recognition system which can do on-line learning using DSP training board. In order to achieve high accuracy, we used Fast Fourier Transform (FFT) for feature extraction, Simple-PCA (SPCA) for feature compression, and a neural network (NN) for recognition. In particular, we presented a novel method based on Multiple PCA to improve recognition accuracy for EMG. From results of computer simulation, it is shown that our approach is effective for improvement in recognition accuracy and speed.Furthermore, we used a genetic algorithm for condteracting a rule generation system which can improve recognition accuracy for EMG. This method yielded mathematical functions using input attributes selected by the genetic algorithms. These functions can achieve a high accuracy compared to conventional approach.Finally we tested noize elimination performance using wavelet transform. In this method, small components after the wavelet transform are eliminated and then signals are inversely transformed. These signals were used for EMG recognition and evaluated its accuracy. Less
近来,诸如蜂窝电话的信息终端已经被广泛使用。基于此,已经建立了诸如蓝牙的无线电通信的工业标准。结果,可以联合收割机并执行各种接口。然而,时至今日,还没有提供具有便携式机具的各种操作并能控制网络的装置(简称“总操作装置”)。此外,从操作性的观点来看,手表类型是优选的。因此,我们研究肌电图(EMG),这是一个从生物体产生的信号与对象的运动。首先,时间序列数据的肌电图是由电极在输入部分。第二,在信号处理部分中放大该数据并执行A/D变换。接下来,将该放大的数据转换为傅立叶功率谱。最后,在学习评估部分,我们对各种数据进行评估,旨在构建一个高速、高精度的学习评估系统。 ...更多信息 利用DSP训练板设计了一个具有在线学习功能的肌电信号识别系统。为了达到高精度,我们使用快速傅立叶变换(FFT)的特征提取,简单PCA(SPCA)的特征压缩,和神经网络(NN)的识别。特别是,我们提出了一种新的方法,基于多重主成分分析,以提高识别准确率的肌电信号。计算机仿真结果表明,该方法在提高识别精度和速度方面是有效的。此外,我们还利用遗传算法构造了一个规则生成系统,提高了肌电信号的识别精度。该方法使用遗传算法选择的输入属性产生数学函数。与传统的去噪方法相比,这些函数具有较高的去噪精度。该方法首先消除小波变换后的小分量,然后对信号进行逆变换。这些信号被用于肌电信号识别,并评估其准确性。少

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis and Recognition of Wrist Motions by Using Multidimensional Directed Information and EMG signal
利用多维定向信息和肌电信号分析和识别手腕运动
Recognition system for EMG signals by using nonnegative matrix factorization
非负矩阵分解的肌电信号识别系统
EMG signal recognition system using feature vectors by genetic function identification
通过遗传功能识别使用特征向量的肌电信号识别系统
Y.Matsumura 他: "Recognition of EMG Signal Patterns by Neural Networks"Proc.of Knowledge-Based Intelligent Information & Engineering Systems' 2003. Vol.1. 623-630 (2003)
Y.Matsumura 等人:“通过神经网络识别 EMG 信号模式”Proc.of Knowledge-Based Intelligence Information & Engineering Systems 2003。Vol.1 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Recognition of EMG signal patterns by neural networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKUMI Minoru其他文献

FUKUMI Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKUMI Minoru', 18)}}的其他基金

Rule Generation from Wrist EMG Recognition Network Using Deep Learning and Muscle Synergy to Increase Data Value
利用深度学习和肌肉协同作用从手腕肌电图识别网络生成规则以增加数据价值
  • 批准号:
    20K12600
  • 财政年份:
    2020
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Innovative Interface Platform by Wrist EMG based on Rule Extraction from Deep Net
基于深度网络规则提取的腕部肌电创新接口平台构建
  • 批准号:
    16K01357
  • 财政年份:
    2016
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of new wrist EMG interface based on fast feature generation by on-line learning
基于在线学习快速特征生成的新型腕部肌电图接口开发
  • 批准号:
    19500193
  • 财政年份:
    2007
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rule Insertion and Extraction in Evolutionary Neural Networks for Image Retrieval
用于图像检索的进化神经网络中的规则插入和提取
  • 批准号:
    13680448
  • 财政年份:
    2001
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 10.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了