Information Geometry for Quantum Systems and Its Applications

量子系统信息几何及其应用

基本信息

  • 批准号:
    15500004
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

This research project aims at deepening information geometry for quantum systems from a statistical/information-theoretical viewpoint and also at investigating new aspects of statistical/information-theoretical problems for quantum systems from a geometrical viewpoint, mainly focusing upon quantum estimation theory and quantum relative entropy. Main results are as follows.1.We have provided various quantum analogues of the Fisher metric and the (alpha=1,-1)-connections on the space of faithful quantum states with a unifying theoretical framework and have studied the general theory of quantum information-geometrical structure as well as physical/information-theoretical significance of some specific structures.2.We have demonstrated several information-geometrical aspects of a manifold of quantum pure states, among which are a close relation between the dually flat structure and the Kaehler structure for a quantum exponential family of pure states and an extension of the RLD metric on the complexified cotangent space.3.The Boltzmann machine is a kind of stochastic neural network and is known to be fit to the framework of information geometry by the fact that its equilibrium distributions form an exponential family. We have studied a quantum extension of Boltzmann machine from an information-geometrical viewpoint to clarify analogy and difference between the classical and quantum cases.4.We have also investigated several related subjects on estimation theory for quantum channels, classical and quantum information theory and information geometry for stochastic processes.
本研究项目旨在从统计/信息论的角度深化量子系统的信息几何,并从几何的角度研究量子系统统计/信息论问题的新方面,主要集中在量子估计理论和量子相对熵。主要结果如下:1.我们以统一的理论框架提供了Fisher度量和忠实量子态空间上的(alpha=1,-1)-连接的各种量子类比,并研究了量子信息几何结构的一般理论以及一些特定结构的物理/信息理论意义。2.我们证明了多种量子纯态的几个信息几何方面,其中 它们是纯态量子指数族的对偶平面结构和凯勒结构之间的密切关系,也是复余切空间上 RLD 度量的扩展。 3. 玻尔兹曼机是一种随机神经网络,由于其平衡分布形成指数族,因此适合信息几何框架。我们从信息几何的角度研究了玻尔兹曼机的量子扩展,以阐明经典情况和量子情况之间的类比和区别。4.我们还研究了量子通道估计理论、经典和量子信息论以及随机过程信息几何等几个相关课题。

项目成果

期刊论文数量(57)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
有村光晴, 長岡浩司: "FV情報源符号の個別弱ユニバーサル性と個別漸近十分統計量"第1回シャノン理論ワークショップ(STW03)予稿集. 21-28 (2003)
Mitsuharu Arimura、Koji Nagaoka:“FV 源代码的个体弱普适性和个体渐近充分统计”第一届香农理论研讨会论文集 (STW03) (STW03)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Differential Geometrical Aspects of Quantum Estimation Theory
量子估计理论的微分几何方面
Asymptotic Theory of Quantum Statistical Inference
量子统计推断的渐近理论
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Hayashi(ed);分担執筆:H.Nagaoka;A.Fujiwara他
  • 通讯作者:
    A.Fujiwara他
A Quantum/Complex Extension of Information Geometry
信息几何的量子/复数扩展
Entanglement-assisted estimation of quantum channels
量子通道的纠缠辅助估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAOKA Hiroshi其他文献

NAGAOKA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAOKA Hiroshi', 18)}}的其他基金

Fouling model of MBR considering CFD analysis and XRF analysis of EPSinside and outside of membrane pore structure.
考虑膜内外EPS的CFD分析和XRF分析的MBR污染模型。
  • 批准号:
    22560550
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of sufficiency and exponential families in classical and quantum information systems
经典和量子信息系统中充分性和指数族的新发展
  • 批准号:
    18500007
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling of fouling considering behavior of EPS accumulated on membrane in MBRs
考虑 MBR 膜上 EPS 积聚行为的污垢建模
  • 批准号:
    18560533
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of Fouling Substances in Membrane Bioreactors with Intermittent Aeration
间歇曝气膜生物反应器中污垢物质的控制
  • 批准号:
    11650565
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
APPLICATION OF HOLLOW FIBER MEMBRANE SEPARATION ACTIVATED SLUDGE PROCESS TO LARGE-SCALE SEWAGE TREATMENT PLANTS
中空纤维膜分离活性污泥工艺在大型污水处理厂的应用
  • 批准号:
    04555137
  • 财政年份:
    1992
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)

相似海外基金

Advances in optimal design of nonlinear experiments based on quantum information geometry
基于量子信息几何的非线性实验优化设计研究进展
  • 批准号:
    21K11749
  • 财政年份:
    2021
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了