Continuous adaptation of the mechanical resonance frequency of power ultrasonic transducers by switching electrical circuits

通过开关电路连续调整功率超声换能器的机械共振频率

基本信息

项目摘要

One of the biggest challenges in the production of power ultrasonic transducers is to ensure that the resonant frequency is within a sufficiently small tolerance range. In order to achieve a large vibration amplitude, ultrasonic systems are operated close to or even in resonance. The natural frequency depends on many influencing factors, which can only be controlled permanently to a limited extent. These include ambient conditions, relaxation behavior, degradation of the piezoelectric properties and the process. The typical answer to this problem is to adjust the operating frequency to the changed resonance frequency, which is often a sufficient solution. It becomes a problem, however, if several ultrasonic transducers are mechanically coupled, then an exact tuning is necessary to avoid beating. The solution to operate only one of the transducers resonantly and to "drag along" the others has limitations in power utilization, so the system has to be oversized. With this research project a completely new way will be taken. The piezoelectric coupling shall be used to adjust the resonance, i.e. the frequency at which the highest amplitude per excitation is reached. Thus, the system shall be adapted to the "desired frequency" and not the frequency to the system. Our preliminary work shows that the appropriate electrical circuitry offers this potential. However, so far only the basic feasibility has been shown and the topic has not yet been investigated systematically. In particular, there is no consideration of the interaction with the load of the ultrasonic oscillators. Three methods are to be investigated to change the resonance frequency. (1) Impedance resonance Tuning on Tuning Piezos (ITTP): In addition to the piezo elements used for excitation, "tuning" piezo elements are integrated into the system which are wired with a synthetic impedance. With this impedance, negative capacitances can be realized and thus a large potential useful frequency range can be achieved. (2) Switched resonance Tuning on Driving Piezos (STDP): Since power ultrasound systems are typically operated with switching amplifiers, there are switching pauses in which the terminals of the piezo elements can be short-circuited or isolated. Due to the piezoelectric coupling, the piezo elements exhibit significantly (20%) different stiffnesses in both states. With the ratio the average stiffness can be adjusted. (3) Switched Impedance resonance Tuning on Driving Piezos (SITDP): In the switching pauses, a synthetic impedance is connected to the terminals, thus significantly increasing the insertion range of the STDP method.As a result, it is possible to actively and continuously adjust the system characteristics instead of tracking the excitation to the system.
功率超声换能器生产中的最大挑战之一是确保谐振频率在足够小的公差范围内。为了实现大的振动幅度,超声波系统在接近共振或甚至共振的情况下操作。固有频率取决于许多影响因素,这些因素只能在有限的范围内永久控制。这些因素包括环境条件、弛豫行为、压电性能的退化和工艺。这个问题的典型解决方案是将工作频率调整到改变的谐振频率,这通常是一个足够的解决方案。然而,如果几个超声换能器机械耦合,则需要精确调谐以避免跳动,这将成为一个问题。仅共振地操作其中一个换能器并且“沿着”其它换能器的解决方案在功率利用方面具有限制,因此系统必须是超大的。这项研究项目将采取一种全新的方式。压电耦合应用于调整谐振,即达到每次激励最高振幅的频率。因此,系统应适应于“所需频率”,而不是系统的频率。我们的初步工作表明,适当的电路提供了这种潜力。然而,到目前为止,只有基本的可行性已经显示,该主题尚未进行系统的研究。特别地,没有考虑与超声波振荡器的负载的相互作用。要研究三种方法来改变谐振频率。(1)调谐压电元件的阻抗共振调谐(ITTP):除了用于激励的压电元件外,“调谐”压电元件还集成到系统中,并与合成阻抗连接。利用该阻抗,可以实现负电容,并且因此可以实现大的潜在有用频率范围。(2)驱动压电元件的开关谐振调谐(STDP):由于功率超声系统通常与开关放大器一起工作,因此存在开关暂停,其中压电元件的端子可以短路或隔离。由于压电耦合,压电元件在两种状态下表现出显著(20%)不同的刚度。利用该比率,可以调整平均刚度。(3)驱动压电元件的开关阻抗谐振调谐(SITDP):在开关暂停时,合成阻抗连接到端子,从而显著增加了STDP方法的插入范围,因此可以主动连续地调整系统特性,而不是跟踪系统的激励。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Jens Twiefel其他文献

Dr.-Ing. Jens Twiefel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Jens Twiefel', 18)}}的其他基金

Fundamental Investigation into the Mechanism of Ultrasonic Wedge-Wedge Bonding through Change of Topography
通过形貌变化进行超声波楔-楔接合机理的基础研究
  • 批准号:
    329797820
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Breakaway Force Reduction in Pneumatic Cylinders utilizing Ultrasound
利用超声波降低气缸的起步力
  • 批准号:
    280032959
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental Investigation into the Mechanisms of Ultrasonic Assisted Single-Component and Multi-Component Low Temperature Sintering for the Assembly of Power Electronic Components
电力电子元件装配超声辅助单组分和多组分低温烧结机理的基础研究
  • 批准号:
    456662835
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

间皮细胞衰老在腹膜透析后腹膜适应不良修复和纤维化发病中的作用及机制研究
  • 批准号:
    82370743
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
利用基因改造实现高等动物对低温脱水等极端条件的适应
  • 批准号:
    32250013
  • 批准年份:
    2022
  • 资助金额:
    300.00 万元
  • 项目类别:
    专项项目
rhTβ4增强间充质干细胞调节T细胞代谢重塑治疗干眼的机制研究
  • 批准号:
    32000530
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
胰岛素和细菌信号协同调节巨噬细胞免疫反应的作用
  • 批准号:
    92057105
  • 批准年份:
    2020
  • 资助金额:
    89.0 万元
  • 项目类别:
    重大研究计划
红树林生态系统对气候异常变化的响应与适应
  • 批准号:
    41176101
  • 批准年份:
    2011
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目

相似海外基金

The context-dependent role of Caveolin-1 as a driver of cellular adaptation in Ewing Sarcoma
Caveolin-1 作为尤文肉瘤细胞适应驱动因素的背景依赖性作用
  • 批准号:
    10662162
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigating the effects of psychosocial stress on laryngeal microbiology and epithelial barrier integrity
研究社会心理压力对喉部微生物学和上皮屏障完整性的影响
  • 批准号:
    10824680
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanical regulation of intestine stem cell-mediated tissue homeostasis in Drosophila
果蝇肠干细胞介导的组织稳态的机械调节
  • 批准号:
    10638341
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Finding the way: Sensory adaptation during bacterial mechanotransduction
寻找方法:细菌机械传导过程中的感觉适应
  • 批准号:
    10744926
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evolution and resolution of ARDS molecular phenotypes
ARDS 分子表型的进化和解析
  • 批准号:
    10592022
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Titin-based stiffness regulation and mechanosensing in activated skeletal muscle.
激活骨骼肌中基于肌联蛋白的刚度调节和机械传感。
  • 批准号:
    10751746
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Post-translational mechanisms of cardiac adaptation during unloading
卸载过程中心脏适应的翻译后机制
  • 批准号:
    10878041
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessment of Achilles Tendon Injury in Adolescents
青少年跟腱损伤的评估
  • 批准号:
    10676623
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
TRPC6 inhibition therapy to rescue cardiac muscle dysfunction in muscular dystrophy
TRPC6 抑制疗法可挽救肌营养不良症患者的心肌功能障碍
  • 批准号:
    10541224
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Epitenon-derived progenitor cells in tendon healing and adaptation
表腱衍生的祖细胞在肌腱愈合和适应中的作用
  • 批准号:
    10640168
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了