Spontaneous speech recognition

自发语音识别

基本信息

  • 批准号:
    15500098
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

We investigated spontaneous speech recognition on academic lecture task and obtained the following results.(1) Lecture speech recognition using pronunciation variant modeling and unsupervised adaptationWe focus on the pronunciation variations observed in spontaneous speech. Aiming to introduce the context-dependence of pronunciation variants, we propose a new method of language modeling based on morphological analysis data designed for pronunciation variant. The proposed method was evaluated on the Corpus of Spontaneous Japanese (CSJ) and achieved the decrease in word error rate (WER) by 4.74% absolute. In addition, unsupervised adaptation of both acoustic and language models was introduced to improve the recognition performance further. The results showed the decrease in WER from 19.96% without adaptation to 15.41% with unsupervised adaptation.(2) Lecture speech recognition using discrete-mixture HMMsWe have investigated noisy speech recognition by using discrete-mixture HMM (DMHMM), … More and found that the performance of DMHMM overcame that of continuous-mixture HMM under environmental noise conditions or impulsive noise conditions. However, it is not clear whether this method is effective in clean conditions. The aim of this investigation is to evaluate the performance of the DMHMM system in clean conditions. In evaluation, we decided to use the "Corpus of Spontaneous Japanese" (CSJ) because we want to compare the performance of our system with that of other recognition systems with common speech corpus, and clarify the performance in such a more difficult task. In the recognition experiments, 3000-state DMHMMs (16 mixture components per state) were used as acoustic models. The language model which represents the pronunciation variety was trained by using 6.86 million words from 2668 lectures in CSJ and was used for recognition. As a result, the system obtained 20.30% WER for 10 academic lectures uttered by male speakers and demonstrated the effectiveness of the proposed method. Less
我们研究了学术演讲任务中的自发语音识别,得到了以下结果。(1)使用发音变体建模和无监督自适应的演讲语音识别我们专注于自发语音中观察到的发音变体。针对发音变体的上下文相关性,提出了一种基于发音变体形态分析数据的语言建模方法。在自然日语语料库(CSJ)上对该方法进行了评估,并实现了4.74%的绝对字错误率(WER)的下降。此外,引入了声学和语言模型的无监督自适应,以进一步提高识别性能。结果表明,WER从没有适应的19.96%下降到15.41%与无监督的适应。(2)基于离散混合隐马尔可夫模型的演讲语音识别我们研究了基于离散混合隐马尔可夫模型(DMHMM)的含噪语音识别, ...更多信息 发现在环境噪声和脉冲噪声条件下,DMHMM的性能优于连续混合HMM。但是,目前尚不清楚这种方法在清洁条件下是否有效。本研究的目的是评估DMHMM系统在清洁条件下的性能。在评估中,我们决定使用“自发日语语料库”(CSJ),因为我们想比较我们的系统的性能与其他识别系统的普通语音语料库,并澄清在这样一个更困难的任务的性能。在识别实验中,使用3000状态DMHNMR(每个状态16个混合成分)作为声学模型。利用CSJ中2668个讲座的686万个单词训练了代表发音变化的语言模型,并用于识别。结果表明,该系统获得了20.30%的WER为男性演讲者发表的10个学术讲座,并证明了所提出的方法的有效性。少

项目成果

期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
話者ベクトルを用いた雑音下話者認識手法の検討
基于说话人向量的噪声下说话人识别方法研究
Rebust Speech Recognition Using Discrete-Mixture HMMs
使用离散混合 HMM 重构语音识别
松本 和樹: "分散音声認識のクライアントにおけるマイク特性変動の除去"情報処理学会 東北支部研究会. 03-5-B2-2. 1-8 (2004)
Kazuki Matsumoto:“分布式语音识别客户端中麦克风特性波动的消除”日本信息处理学会东北分会研究组 03-5-B2-2 (2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小坂 哲夫: "Noisy speech recognition with discrete-mixture HMMs based on MAP estimation"18th International Congress on Acoustics. Tu. P2.8. (2004)
Tetsuo Kosaka:“基于 MAP 估计的离散混合 HMM 的噪声语音识别”第 18 届国际声学大会 (2004)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
発音変形依存モデルを用いた講演音声認識
使用发音转换依赖模型的讲座语音识别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOHDA Masaki其他文献

KOHDA Masaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOHDA Masaki', 18)}}的其他基金

Large-vocabulary continuous speech recognition on spontaneous speech task
自发语音任务的大词汇量连续语音识别
  • 批准号:
    18500126
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Vocabulary Continuous Speech Recognition System on Japanese Newspaper Reading Task
日语报纸阅读任务的大词汇量连续语音识别系统
  • 批准号:
    10680368
  • 财政年份:
    1998
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm of Spontaneous Speech Recognition Based on A^<**> Search
基于A^<**>搜索的自发语音识别算法
  • 批准号:
    07680379
  • 财政年份:
    1995
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech Recognition Based on Intelligent Beam Search Algorithm
基于智能波束搜索算法的语音识别
  • 批准号:
    01460254
  • 财政年份:
    1989
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Study of automatic captioning based on unified modeling of spontaneous speech recognition and automatic editing
基于自发语音识别与自动编辑统一建模的自动字幕研究
  • 批准号:
    25730112
  • 财政年份:
    2013
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
STIMULATE: Modeling Structure in Speech above the Segment for Spontaneous Speech Recognition
刺激:对自发语音识别片段上方的语音结构进行建模
  • 批准号:
    9996450
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
STIMULATE: Modeling Structure in Speech above the Segment for Spontaneous Speech Recognition
刺激:对自发语音识别片段上方的语音结构进行建模
  • 批准号:
    9618926
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Algorithm of Spontaneous Speech Recognition Based on A^<**> Search
基于A^<**>搜索的自发语音识别算法
  • 批准号:
    07680379
  • 财政年份:
    1995
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了