Large-vocabulary continuous speech recognition on spontaneous speech task

自发语音任务的大词汇量连续语音识别

基本信息

  • 批准号:
    18500126
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

1. Large-vocabulary continuous speech recognition on spontaneous speech taskIn large-vocabulary continuous speech recognition, we investigate several methods of unsupervised adaptation of both acoustic and language models and evaluate the methods on the Corpus of Spontaneous Japanese (CSJ). The LVCSR system has full-covariance matrices as the acoustic model. The results of recognition experiments showed the decrease in word error rate (WER) from 19.17% without adaptation to 14.73% with unsupervised adaptation, moreover to 14.47% with unsupervised adaptation by weighting the adaptation data on the basis of a part of speech. Also, we compared the performance between continuous-mixture FRAM (CHMM) system and discrete-mixture HMM (DMHMM) system on the CSJ. As a result, DMHMM system provided almost the same performance as the CHMM system and WER of 19.73% had been obtained with 6000-state 24-mixture DMHMMs, though it has been generally believed that the recognition error rates of DMHMM were … More much higher than those of CHMM until now.2. Robust speech recognition using discrete-mixture HMMsWe introduce a new method of robust speech recognition under noisy conditions based on discrete-mixture HMMs (DMHMMs). DMHMMs were originally proposed to reduce calculation costs in the decoding process. Recently, we have applied DMHMMs to noisy speech recognition, and found that they were effective for modeling noisy speech. Towards the further improvement of noise-robust speech recognition, we propose a novel normalization method for DMHMMs based on histogram equalization (HEQ). The HEQ method can compensate the nonlinear effects of additive noise. It is generally used for the feature space normalization of continuous-mixture HMM (CHMM) systems. In this paper, we propose both model space and feature space normalization of DMHMMs by using HEQ. In the model space normalization, codebooks of DMHMMs are modified by the transform function derived from the HEQ method. The proposed method was compared using both conventional CHMMs and DMHMMs. The results showed that the model space normalization of DMHMMs by multiple transform functions was effective for noise-robust speech recognition. Less
1.在大词汇量连续语音识别中,我们研究了几种声学和语言模型的无监督自适应方法,并在自发日语语料库(CSJ)上对这些方法进行了评估。LVCSR系统具有全协方差矩阵作为声学模型。识别实验结果表明,通过对自适应数据按词性加权,自适应算法的误识率从未自适应的19.17%降低到无监督自适应的14.73%,进而降低到无监督自适应的14.47%。在CSJ上比较了连续混合弗拉姆(CHMM)系统和离散混合HMM(DMHMM)系统的性能。结果表明,DMHMM系统提供了几乎与CHMM系统相同的性能,并且在6000状态24混合DMHMM下获得了19.73%的WER,尽管人们普遍认为DMHMM的识别错误率是 ...更多信息 远远高于CHMM的水平.基于离散混合隐马尔可夫模型的鲁棒语音识别本文提出了一种基于离散混合隐马尔可夫模型(DMHMM)的噪声环境下鲁棒语音识别方法。DMHHT最初被提出来减少解码过程中的计算成本。最近,我们已经将DMHHT应用于含噪语音识别,并发现它们对含噪语音建模是有效的。为了进一步提高语音识别的抗噪性,提出了一种基于直方图均衡化(HEQ)的DMH归一化方法。HEQ方法可以补偿加性噪声的非线性效应。它通常用于连续混合HMM(CHMM)系统的特征空间归一化。在本文中,我们提出了两个模型空间和特征空间规范化的DMHQs使用HEQ。在模型空间归一化中,利用HEQ方法推导出的变换函数对DMH码本进行修正。所提出的方法进行了比较,使用传统的CHCl 3和DMHCl 3。实验结果表明,采用多个变换函数对DMH进行模型空间归一化,对噪声鲁棒性语音识别是有效的。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
話し言葉音声認識における教師なし適応の改善
改善口语语音识别中的无监督适应
マルチコンディションモデルを用いた音楽環境下の音声認識の検討
基于多条件模型的音乐环境下语音识别研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Takeda;M. Katoh;T. Kosaka;M. Kohda;大貫芳久
  • 通讯作者:
    大貫芳久
Noisy Speech recognition Based on Codebook Normalization of Discrete-Mixture HMMs
基于离散混合 HMM 码本归一化的噪声语音识别
Spontaneous speech recognition using discrete-mixture HMMs
使用离散混合 HMM 的自发语音识别
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kosaka;M. Katoh;M. Kohda
  • 通讯作者:
    M. Kohda
Robust Speech Recognition and Understanding
强大的语音识别和理解
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tetsuya Takiguchi;R. Takashima;Y. Ariki;Hironori Matsumasa;Hyunsin Park;Tetsuya Takiguchi;高島遼一;高島遼一;高島遼一;室井貴司;吉井麻里子;室井貴司;三宅信之;室井貴司;三宅信之;朴玄信;三宅信之;高島遼一;朴玄信;室井貴司;松田博義;住田雄司;高島遼一;朴玄信;松田博義;三宅信之;住田雄司;松田博義;三宅信之;Tetsuya Takiguchi;Tetsuya Takiguchi
  • 通讯作者:
    Tetsuya Takiguchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOHDA Masaki其他文献

KOHDA Masaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOHDA Masaki', 18)}}的其他基金

Spontaneous speech recognition
自发语音识别
  • 批准号:
    15500098
  • 财政年份:
    2003
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Vocabulary Continuous Speech Recognition System on Japanese Newspaper Reading Task
日语报纸阅读任务的大词汇量连续语音识别系统
  • 批准号:
    10680368
  • 财政年份:
    1998
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm of Spontaneous Speech Recognition Based on A^<**> Search
基于A^<**>搜索的自发语音识别算法
  • 批准号:
    07680379
  • 财政年份:
    1995
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech Recognition Based on Intelligent Beam Search Algorithm
基于智能波束搜索算法的语音识别
  • 批准号:
    01460254
  • 财政年份:
    1989
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

An investigation of generative acoustic latent representations for meeting speech recognition and summarization
用于满足语音识别和摘要的生成声学潜在表示的研究
  • 批准号:
    24K15004
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Disrupter or enabler? Assessing the impact of using automatic speech recognition technology in interpreter-mediated legal proceedings
颠覆者还是推动者?
  • 批准号:
    2889440
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Studentship
Analysis of speech recognition as a tool in medical English education
语音识别作为医学英语教育工具的分析
  • 批准号:
    23K00767
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic Speech Recognition (ASR) engine to improve autistic children speech
自动语音识别(ASR)引擎可改善自闭症儿童的言语能力
  • 批准号:
    10056712
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant for R&D
Industrial research into the reduction of biases in foundational Automatic Speech Recognition models.
减少基础自动语音识别模型中偏差的工业研究。
  • 批准号:
    10068091
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Collaborative R&D
M3OLR: Towards Effective Multilingual, Multimodal and Multitask Oriental Low-resourced Language Speech Recognition
M3OLR:迈向有效的多语言、多模态和多任务东方稀缺语言语音识别
  • 批准号:
    23K11227
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Establishment of intraoperative education model using speech recognition and language information processing technology
利用语音识别和语言信息处理技术建立术中教育模型
  • 批准号:
    23K16281
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SaTC: CORE: Small: Robust Speaker and Speech Recognition Under AI-Driven Physical and Digital Attacks
SaTC:核心:小型:人工智能驱动的物理和数字攻击下的鲁棒扬声器和语音识别
  • 批准号:
    2310207
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
  • 批准号:
    10699887
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
  • 批准号:
    2207770
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了