Algorithm of Spontaneous Speech Recognition Based on A^<**> Search

基于A^<**>搜索的自发语音识别算法

基本信息

  • 批准号:
    07680379
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Spontaneous speech recognition is regarded as a problem of graph search considering various restrictions through acoustic model, lexicon, language model and so on. In order to reduce a computation amount for recognition processing without degradation of recognition performance, some key technologies of spontaneous speech recognition were investigated.(1) Acoustic model and speaker adaptationThe important aspects of context-dependent acoustic modeling using a limited training data set are how to tie the model parameters and how to handle the unseen contexts. We proposed the decision tree-based successive state splitting algorithm, and showed that HM-Net generated with this algorithm had high accuracy and enabled to represent any contexts. Speaker adaptation of acoustic model parameters based on MAP estimation method was also investigated.(2) Fast matching and likelihood normalizationIn large vocabulary word recognition, a fast preselection of word candidates was investigated. Phoneme recognition of input speech was carried out and an optimal phoneme sequence was obtained from the input speech. To select word candidates, DP matching was executed with the optimal phoneme sequence. The word candidates were verified by Viterbi scoring between input speech and HMM-based word model. Normalization technique of word likelihood for spontaneous speech recognition was also investigated.(3) Language model and task adaptationN-gram language models were constructed from EDR corpus, 5-million-word Japanese corpus. The models were investigated under various conditions about training text size, vocabulary and cutoff condition. The result of experiments clarified the optimum condition under a certain training text size. We carried out another experiments about task adaptation. An N-gram model from a dialog was mixed with the N-gram from EDR corpus, which made about 60% reduction of perplexity.
通过声学模型、词汇模型、语言模型等,将自发语音识别看作是一个考虑了各种限制条件的图搜索问题。为了在不降低识别性能的前提下减少识别处理的计算量,对自发语音识别的一些关键技术进行了研究。(1)声学模型和说话者自适应使用有限训练数据集的上下文相关声学建模的重要方面是如何绑定模型参数以及如何处理看不见的上下文。我们提出了基于决策树的连续状态分裂算法,并证明了该算法生成的HM-Net具有较高的准确率,能够表示任何上下文。研究了基于MAP估计方法的扬声器声学模型参数自适应问题。(2)快速匹配和似然归一化在大词汇量词识别中,研究了候选词的快速预选方法。对输入语音进行音位识别,并从输入语音中获得最优音位序列。为了选择候选词,采用最优音素序列进行DP匹配。通过输入语音和基于hmm的词模型之间的Viterbi评分对候选词进行验证。研究了用于自发语音识别的词似然归一化技术。(3)基于EDR语料库和500万字日语语料库构建了n- gram语言模型。在训练文本大小、词汇量和截止条件等条件下对模型进行了研究。实验结果明确了在一定训练文本大小下的最佳条件。我们进行了另一个关于任务适应的实验。将对话框的N-gram模型与EDR语料库的N-gram模型混合,使困惑率降低约60%。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Ito, N.Daishima, A.maruyama, M.Katoh, M.Kohda: "N-gram Estimation from Japanese Large Corpus and Task Adaptation of N-gram" Technical Report of IPSJ. SLP-11-5. 25-30 (1996)
A.Ito、N.Daishima、A.maruyama、M.Katoh、M.Kohda:《日语大型语料库的 N-gram 估计和 N-gram 的任务适配》IPSJ 技术报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加藤正治: "HMMによるワードスポッティングにおけるViterbi best-firsサーチの検討" 情報処理学会東北支部研究会資料. 94-4-4. 1-6 (1995)
Masaharu Kato:“使用 HMM 进行单词识别的维特比最佳优先搜索的研究”日本信息处理学会东北分会研究小组资料 94-4-4(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
伊藤彰則: "対話音声認識のための事前タスク適応の検討" 電子情報通信学会技術研究報告. S96-81. 25-32 (1996)
Akinori Ito:“对话语音识别的任务前适应研究”IEICE S96-81(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加藤正治: "最適音素系列に基づく単語予備選択法の検討" 電子情報通信学会技術研究報告. S96-13. 9-14 (1996)
加藤正治:“基于最优音素序列的单词初步选择方法的研究”IEICE S96-13(1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Ito, M.Kohda: "Language Modeling by Kana and Kanji String N-gram" Trans.IEICE. Vol.J79-D-II,No.12. 2062-2069 (1996)
A.Ito、M.Kohda:“假名和汉字字符串 N-gram 的语言建模”Trans.IEICE。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOHDA Masaki其他文献

KOHDA Masaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOHDA Masaki', 18)}}的其他基金

Large-vocabulary continuous speech recognition on spontaneous speech task
自发语音任务的大词汇量连续语音识别
  • 批准号:
    18500126
  • 财政年份:
    2006
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spontaneous speech recognition
自发语音识别
  • 批准号:
    15500098
  • 财政年份:
    2003
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Large Vocabulary Continuous Speech Recognition System on Japanese Newspaper Reading Task
日语报纸阅读任务的大词汇量连续语音识别系统
  • 批准号:
    10680368
  • 财政年份:
    1998
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech Recognition Based on Intelligent Beam Search Algorithm
基于智能波束搜索算法的语音识别
  • 批准号:
    01460254
  • 财政年份:
    1989
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Development and Applications of a Novel Acoustic Model for Respiratory System
新型呼吸系统声学模型的开发与应用
  • 批准号:
    RGPIN-2016-06549
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Applications of a Novel Acoustic Model for Respiratory System
新型呼吸系统声学模型的开发与应用
  • 批准号:
    RGPIN-2016-06549
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of acoustic model on small training data for dysarthric speech recognition
用于构音障碍语音识别的小训练数据声学模型的构建
  • 批准号:
    20K19862
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and Applications of a Novel Acoustic Model for Respiratory System
新型呼吸系统声学模型的开发与应用
  • 批准号:
    RGPIN-2016-06549
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    9803678
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    10159735
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
Automatic acquisition of optimized acoustic model unit for automatic speech recognition using deep learning
使用深度学习自动获取用于自动语音识别的优化声学模型单元
  • 批准号:
    19K12027
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward the next generation in transcranial MR-guided focused ultrasound: Innovations in thermal and acoustic model-based planning and monitoring for improved safety, efficacy and efficiency
迈向下一代经颅 MR 引导聚焦超声:基于热和声学模型的规划和监测创新,以提高安全性、有效性和效率
  • 批准号:
    10401242
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
Development and Applications of a Novel Acoustic Model for Respiratory System
新型呼吸系统声学模型的开发与应用
  • 批准号:
    RGPIN-2016-06549
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Development and Applications of a Novel Acoustic Model for Respiratory System
新型呼吸系统声学模型的开发与应用
  • 批准号:
    RGPIN-2016-06549
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了