Bacterial trapping near topographic surfaces under shear flow

剪切流下地形表面附近的细菌截留

基本信息

项目摘要

Motile bacteria, such as Escherichia coli (E. coli), colonize surfaces, where they form hazardous biofilms and cause biofouling. When reaching the surface, they first need to be trapped by physical mechanisms, which then promotes their irreversible attachment to the surface through chemical bonding. Despite much insight, near-surface trapping of E. coli is still a poorly understood complex process, which is determined by E. coli’s run-and-tumble motility and physical conditions, such as shear flow and the surface topography. However, controlling near-surface trapping is essential for medical and biotechnological applications, for example, for preventing biofilms and biofouling but also for using bacteria as drug carriers to target disease sites such as malignant tumors. Therefore, the Indian and German groups join forces and use their complementary expertises to carry out a comprehensive simulation analysis in order to explore how physical conditions can be used to control the trapping of E. coli in shear flow near surfaces with different topography.We will perform a step-by-step analysis of the complex problem and heavily rely on a realistic model E. coli developed earlier by the Indian project leader. It will be used for a thorough preparatory analysis of the run-and-tumble motion in the bulk. In parallel, the German group will implement the model E. coli in a code based on the method of Multi-Particle Collision Dynamics, which will enable us to simulate fluid flows around the bacterium near surfaces with varying topography. Sharing the code between both groups, we will thoroughly analyze how a motile E. coli becomes trapped near a surface either in a quiescent fluid or under shear flow and thereby clarify contradicting observations. Our foci will be on the role of flagellar dynamics during runs and tumbles including polymorphism, which has so far been not resolved in any of the reported experimental studies on surface trapping, and also on the role of rheotaxis and Jeffery orbits for the bacterial dynamics. Finally, we will model surfaces with non-planar topography and investigate situations related to the control of biofouling and targeted drug deposition.
运动细菌,如大肠杆菌(E.大肠杆菌),定殖表面,在那里它们形成有害的生物膜并引起生物污垢。当到达表面时,它们首先需要被物理机制捕获,然后通过化学键促进它们不可逆地附着在表面上。尽管有很多见解,但E.大肠杆菌是一个复杂的过程,这是由大肠杆菌决定的。大肠杆菌的运行和翻滚运动和物理条件,如剪切流和表面形貌。然而,控制近表面捕获对于医学和生物技术应用是必不可少的,例如,用于防止生物膜和生物污垢,而且用于使用细菌作为药物载体以靶向疾病部位,例如恶性肿瘤。因此,印度和德国的小组联合起来,利用他们互补的专业知识,进行全面的模拟分析,以探索如何利用物理条件来控制E.大肠杆菌在不同地形表面附近的剪切流中的运动。我们将对这个复杂的问题进行一步一步的分析,并在很大程度上依赖于一个真实的大肠杆菌模型。由印度项目负责人早些时候开发的大肠杆菌。它将被用于对整体中的奔跑和翻滚运动进行彻底的预备分析。与此同时,德国集团将执行E模式。大肠杆菌在一个基于多粒子碰撞动力学方法的代码,这将使我们能够模拟流体流动的细菌附近的表面与不同的地形。在两个小组之间共享代码,我们将彻底分析一个运动E。大肠杆菌在静止流体或剪切流中被捕获在表面附近,从而澄清了相互矛盾的观察结果。我们的重点将是鞭毛动力学在运行和翻滚,包括多态性,迄今为止尚未解决的任何表面捕获的实验研究报告中的作用,也对rheotaxis和杰弗里轨道的细菌动力学的作用。最后,我们将模拟具有非平面形貌的表面,并研究与生物污垢和靶向药物沉积控制相关的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Holger Stark其他文献

Professor Dr. Holger Stark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Holger Stark', 18)}}的其他基金

How hydrodynamics influences the collective motion of microswimmers: A particle-based simulation study
流体动力学如何影响微型游泳者的集体运动:基于粒子的模拟研究
  • 批准号:
    254465319
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Collective motion of model microorganisms in Poiseuille flow
泊肃叶流中模型微生物的集体运动
  • 批准号:
    214525933
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling the Locomotion of the African Trypanosome
模拟非洲锥虫的运动
  • 批准号:
    193560768
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Locomotion of Microorganisms with the help of Flagella: The African Trypanosome
微生物在鞭毛的帮助下运动:非洲锥虫
  • 批准号:
    27767510
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretische Physik
理论物理
  • 批准号:
    5265464
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Dynamic wetting on deforming substrates, elastic sheets, and under evaporation: A study with the boundary element method
变形基材、弹性片材和蒸发下的动态润湿:边界元法研究
  • 批准号:
    505839720
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
An in silico model of the African trypanosome: Moving in complex environments
非洲锥虫的计算机模型:在复杂环境中移动
  • 批准号:
    504947458
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

RFP13调节细胞凋亡的机制
  • 批准号:
    30670418
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of transverse spin and chirality of light by particles trapping near the evanescent field
倏逝场附近捕获的粒子对光的横向自旋和手性的影响
  • 批准号:
    24K17626
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trapping and Watching Biomolecular Complexes near Nanopores
捕获和观察纳米孔附近的生物分子复合物
  • 批准号:
    DP160102836
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of the Inner Radiation Belt Near the Trapping Limit
接近俘获极限的内辐射带动力学
  • 批准号:
    1455470
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of the Inner Radiation Belt Near the Trapping Limit
接近俘获极限的内辐射带动力学
  • 批准号:
    1023332
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了