Research on special values of the standard L-functions of Siegel modular forms and related fields
西格尔模形式标准L函数的特殊值及相关领域研究
基本信息
- 批准号:15540003
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)I considered the relation between special values of the standard zeta functions and the congruence a Siegel cusp form of arbitrary degree. In particular, I proposed a conjecture concerning the congruence of the Saito-Kurokawa lift of a cuspidal Hecke eigenform with respect to SL(2,Z) and the special value of its L-function, and proved it under certain condition. Furthermore we gave some numerical evidence for our conjecture. I gave talks on these topics at the workshop held at Hakuba on October 2004, and at the conference held at Karatsu on March 2005.(2)Let M and N be square free positive integers, and φ and χ be Dirichlet characters mod M and N, respectively. For a cuspidal Hecke eigenform f of neben type φ I gave an explicit formula for the special values of the standard zeta function of f twisted by χ. I gave numerical examples for these values and checked some results derived from the Block-Kato conjecture.(3)I proved that the space of Eisenstein series of square free level of quadratic nebentype is spanned by the genus theta series jointly with R. Schulze-Pillot. By using this result, I proved that the space of cusp forms of square free level of quadratic nebentype is spanned by the theta series jointly with S.Boecherer and R.Schulze-Pillot. They gave talks on these topics at the symposium held at Rikkyo University on September 2004.(4)I gave an explicit form of the Koecher-Maass series for the real analytic Eisenstein series jointly with T.Ibukiyama. I gave a talk on this topic at the symposium held at Rikkyo University on September 2004.
(1)考虑了标准zeta函数的特殊值与任意次Siegel尖形式的同余的关系。特别地,我提出了关于锯齿Hecke特征型的Saito-Kurokawa升对SL(2,Z)的同余性及其l函数的特殊值的一个猜想,并在一定条件下证明了它。此外,我们还给出了一些数值证据来证明我们的猜想。我在2004年10月在白波举行的研讨会和2005年3月在卡拉津举行的会议上就这些主题进行了演讲。(2)设M和N为自由正整数,φ和χ分别为对M和N模取的狄利克雷字符。对于neben型φ I的锯齿Hecke特征型f,给出了f被χ扭曲的标准ζ函数的特殊值的显式公式。我给出了这些值的数值例子,并检查了由Block-Kato猜想得出的一些结果。(3)与R. Schulze-Pillot共同证明了二次nebenttype的平方自由水平的Eisenstein级数的空间是由格级数张成的。利用这一结果,我证明了二次型nebentype的平方自由水平的尖形空间是由S.Boecherer和R.Schulze-Pillot共同张成的。他们于2004年9月在立教大学举行的研讨会上发表了上述内容。(4)与T.Ibukiyama共同给出了实解析型爱森斯坦级数的koecher - mass级数的显式形式。2004年9月,我在立教大学举行的研讨会上发表了这一主题的演讲。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An explicit formula for the Koecher-Maass Dirichlet series for the Ikeda lifting
池田提升的 Koecher-Maass Dirichlet 级数的显式公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Ibukiyama;H.Katsurada
- 通讯作者:H.Katsurada
T.Ibukiyama: "An explicit form of the Koecher-Maass Dirichlet series for klingen's Eisenstein series"J.Number Theory. 71. 223-256 (2003)
T.Ibukiyama:“克林根爱森斯坦级数的 Koecher-Maass Dirichlet 级数的显式形式”J.数论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
An explicit form of the Koecher-Maass Dirichlet series for Klingen's Eisenstein series
克林根爱森斯坦级数的 Koecher-Maass Dirichlet 级数的显式形式
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Masaaki Amou;Masanori Katsurada;T.Ibukiyama
- 通讯作者:T.Ibukiyama
H.Katsurada: "Pullback formula of Eisenstein series and its applications"第2回保型形式周辺分野スプリングコンファレンス報告集. 167-204 (2004)
H. Katsurada:“爱森斯坦级数的回拉公式及其应用”第二届自守形式春季会议报告 167-204 (2004)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATSURADA Hidenori其他文献
Curve counting via stable objects in derived cate- gories of Calabi-Yau 4-folds
通过 Calabi-Yau 4 倍派生类别中的稳定对象进行曲线计数
- DOI:
10.1016/j.aim.2022.108531 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
ATOBE Hiraku;CHIDA Masataka;IBUKIYAMA Tomoyoshi;KATSURADA Hidenori;YAMAUCHI Takuya;Yalong Cao and Yukinobu Toda - 通讯作者:
Yalong Cao and Yukinobu Toda
On the socles of certain parabolically induced representations of p-adic classical groups
关于 p 进经典群的某些抛物线诱导表示的基础
- DOI:
10.1090/ert/612 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
ATOBE Hiraku;CHIDA Masataka;IBUKIYAMA Tomoyoshi;KATSURADA Hidenori;YAMAUCHI Takuya;Atobe Hiraku - 通讯作者:
Atobe Hiraku
Harder's conjecture I
更难
- DOI:
10.2969/jmsj/87988798 - 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
ATOBE Hiraku;CHIDA Masataka;IBUKIYAMA Tomoyoshi;KATSURADA Hidenori;YAMAUCHI Takuya - 通讯作者:
YAMAUCHI Takuya
Construction of local A-packets
本地A包的构建
- DOI:
10.1515/crelle-2022-0030 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
ATOBE Hiraku;CHIDA Masataka;IBUKIYAMA Tomoyoshi;KATSURADA Hidenori;YAMAUCHI Takuya;Atobe Hiraku;Atobe Hiraku - 通讯作者:
Atobe Hiraku
KATSURADA Hidenori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATSURADA Hidenori', 18)}}的其他基金
Periods, congruence and special values of L functions for modular forms
模形式的 L 函数的周期、同余和特殊值
- 批准号:
16H03919 - 财政年份:2016
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Perrods and cogruences of modular forms
模形式的Perrods和同余式
- 批准号:
24540005 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Periods and congruence of modular forms, and Selmer group
模形式的周期和同余,以及 Selmer 群
- 批准号:
21540004 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on special values on L-functions of automorphic forms
自守形式L-函数特殊值的研究
- 批准号:
17540003 - 财政年份:2005
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Koecher-Maass series for various liftings of Siegel modular forms
针对 Siegel 模形式的各种提升的 Koecher-Maass 级数的研究
- 批准号:
13640003 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Dirichlet series for Siegel modular forms
西格尔模形式的狄利克雷级数研究
- 批准号:
11640002 - 财政年份:1999
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Eisenstein series on bounded symmeric domain
有界对称域上爱森斯坦级数的研究
- 批准号:
09640002 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local densities of quadratic forms and related problems
二次型局部密度及相关问题
- 批准号:
06640003 - 财政年份:1994
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




