Research of Motivic Geometry from the viewpoint of Non-commutative algebraic geometry

非交换代数几何视角下的动机几何研究

基本信息

  • 批准号:
    15540032
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

During the period of this research, it was found that the notion of finite dimensionality of motives can be greatly generalized, by Yves Andre and Bruno Kahn. The possible finite dimensionality of Chow motives was the starting point of this research. One can formulate the finite dimensionality in any tensor category, in particular in the category of Mixed motives. Unfortunately, we cannot expect that the category of mixed motives to be finite dimensional in my sense (O'Sullivan), and hence the notion of finite dimensionality should be generalized to the notion of Schur finiteness. This generalization posed major problems, for example, the problem of Schur Nilpotency.Under this circumstances, following is the list of major results of this research. (1)Brushing up the notion of finite dimensionality of Chow motives (2)Relativization of the notion of motivic spaces (3)Positive characteristic approach to the Jacobian conjecture (4)Etaleness property of Alexander schemes (5)Chow motives are 1 dimensional if and only if they are invertible (6)Finding the Schur dimension (7)The finite dimensionality of the motives is stable under the deformation with smooth fiber (8)The relation between the finite dimensionality of motives and the rationality of Motivic Zeta functionAmong this list, (7)may have a strong implication in the future. It is a joint work with Vladimir Guletskii, and the main limitation is that we can apply this result only for the family with the smooth fiber. If one can generalize this result to non-smooth fiber spaces, then that would be a breakthrough towards the proof of finite dimensionality of all Chow motives.
在本研究期间,我们发现,动机的有限维度的概念,可以大大推广,由安德烈和布鲁诺卡恩。周式动机可能的有限维性是本研究的出发点。人们可以在任何张量范畴中用公式表示有限维,特别是在混合动机范畴中。不幸的是,我们不能期望混合动机的范畴在我的意义上是有限维的(奥沙利文),因此有限维的概念应该推广到舒尔有限性的概念。这一推广提出了一些重大问题,例如Schur幂零性问题。在这种情况下,以下是本研究的主要结果。(1)提出Chow模的有限维概念(2)模空间概念的相对化(3)Jacobian猜想的正特征逼近(4)亚历山大格式的Etaleness性质(5)Chow模是1维的当且仅当它们可逆(6)求Schur维数(7)模的有限维在光滑纤维变形下是稳定的(8)动机的有限维性与动机Zeta函数的合理性之间的关系在这一列表中,(7)可能在未来有很强的含义。这是一个联合工作与弗拉基米尔Guletskii,和主要的限制是,我们可以应用这个结果只为家庭与光滑纤维。如果能将这个结果推广到非光滑纤维空间,那么这将是对证明所有Chow动机的有限维性的一个突破。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chow groups are finite dimensional,in some sense
从某种意义上说,Chow群是有限维的
Correspondences to abelian varieties II
与阿贝尔变种 II 的对应关系
Correspondence to Abelian Varieties II
与阿贝尔簇 II 的对应关系
Positibe Characteristic Approach to Weak Kernel Conjecture
弱核猜想的正特征方法
Chow groups are finite dimensional, in some sense
从某种意义上说,Chow 群是有限维的
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIMURA Shun-ichi其他文献

KIMURA Shun-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIMURA Shun-ichi', 18)}}的其他基金

Rationality of Motivic Zeta
Zeta 动机的合理性
  • 批准号:
    24654007
  • 财政年份:
    2012
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Conservativity and finite dimensional conjecture for Motives
动机的保守性和有限维猜想
  • 批准号:
    21540038
  • 财政年份:
    2009
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite dimensionality of Motives
动机的有限维性
  • 批准号:
    18540033
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Categorial Finite Dimensionality
分类有限维
  • 批准号:
    25287007
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Finite dimensionality effects in superhard and magnetically doped (wide gap) superlattices
超硬和磁掺杂(宽间隙)超晶格中的有限维效应
  • 批准号:
    6289-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Finite dimensionality of Motives
动机的有限维性
  • 批准号:
    18540033
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite dimensionality effects in superhard and magnetically doped (wide gap) superlattices
超硬和磁掺杂(宽间隙)超晶格中的有限维效应
  • 批准号:
    6289-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
Finite dimensionality effects in superhard and magnetically doped (wide gap) superlattices
超硬和磁掺杂(宽间隙)超晶格中的有限维效应
  • 批准号:
    6289-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了