Study on rank filetration of finite H-spaces

有限H空间的秩过滤研究

基本信息

  • 批准号:
    15540074
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The summary of research results is as follows.1 It is important to know what nilpotency the group [X,X] has for a Hopf space X. However another important thing is to study the composition structure of the group [X,X]. Morisugi determined the relationship between the composition structure and the group structure of [X,X] for X=SU(3) and Sp(2). This structure looks like "Square ring" which Baues in Germany studied.Let M^n be the mod 2 Moore space. For n【greater than or equal】3 it is known that there exists a lift <η_n>^^^^of the suspension of the Hopf map, η_n:S^<n+1>→S^n. We investigated the order of the Whitehead product [<η_n>^^^^,<η_n>^^^^] in π_<2n+1>(M^n).2 Let G be the simple Lie group of classical type. Oshima showed that the group [G,G] is non-commutative for almost all cases of G mentioned above. And for some cases of G, he determined the nilpotency class of [G,G].Let X be a Hopf complex. In this case [X,X] is, so called, an algebraic loop, that is, it has a binary operation with both left and right inverses. Oshima also investigated how they differs from each other.3 Hemmi showed that the possible even dimensional generators of mod 3 cohomology rings of finite Hopf spaces occurs only in dimension 8 or 20. And he almost determined the structure of such mod 3 cohomology rings. He also showed that under some conditions, there is no Hopf space X with H(X;Z/p)≡Λ(x,p^1x,…p^<p-2>x)
1.知道群[X,X]对Hopf空间X有什么幂零是很重要的,但另一件重要的事情是研究群[X,X]的合成结构。Morisugi确定了X=SU(3)和Sp(2)时[X,X]的组成结构和基团结构之间的关系。这种结构看起来像德国Baues研究的“正方形环”,设M^n是mod-2-Moore空间。对于n[大于或等于]3,已知存在η映射的悬挂的升力&lt;η_n&gt;^^,→_n:S^&lt;n+1&gt;ηS^n,我们研究了η_n&gt;^,π_n&gt;^]中Whitehead乘积[&lt;η_n&gt;^]的阶。Oshima证明了群[G,G]对于上述几乎所有的G情形都是非对易的。对于G的某些情形,他确定了[G,G]的幂零类,设X是Hopf复形。在这种情况下,[X,X]是所谓的代数循环,也就是说,它具有左逆和右逆的二元运算。3hemmi证明了有限Hopf空间的mod3上同调环的可能偶维生成元只出现在8或20维上,并且他几乎确定了这种mod3上同调环的结构。他还证明了在一定条件下,不存在具有H(X;Z/p)≡Λ(x,p^1X,…P^&lt;p-2&gt;x)

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Bott suspenssion for non-compact Lie groups
关于非紧李群的 Bott 悬置
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Hemmi;Y.Kawamoto;T.Watanabe
  • 通讯作者:
    T.Watanabe
Composition structure of the self maps of SU(3) and Sp(2)
SU(3)和Sp(2)的自映射的复合结构
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Hemmi;J.Lin;Y.Hemmi;K.Morisugi
  • 通讯作者:
    K.Morisugi
Samelson products in the exceptional Lie group of rank 2
Samelson 产品处于第 2 级特殊李群中
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Arkowitz;M.Arkowitz;M.Arkowitz;Hideaki Oshima;Hideaki Oshima
  • 通讯作者:
    Hideaki Oshima
Noncommutativity of the group of self homotopy classes of classical simple Lie groups
经典简单李群的自同伦类群的非交换性
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Arkowitz;H.Oshima;J.Strom
  • 通讯作者:
    J.Strom
Higher homotopy commutativity and cohomology of finite H-spaces
有限 H 空间的高同伦交换性和上同调
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORISUGI Kaoru其他文献

MORISUGI Kaoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORISUGI Kaoru', 18)}}的其他基金

Algebraic structure of homotopy sets of self maps of Hopf spaces
Hopf空间自映射同伦集的代数结构
  • 批准号:
    13640072
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self maps of the suspension of H-spaces
H 空间悬浮的自映射
  • 批准号:
    10640077
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
  • 批准号:
    2321093
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
  • 批准号:
    2888102
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Studentship
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
  • 批准号:
    EP/Y001478/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grant
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
  • 批准号:
    2203867
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Lie groups in Mathematics and Physics
数学和物理中的李群
  • 批准号:
    574647-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
  • 批准号:
    21K03248
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了