Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups

会议:I.H.E.S.

基本信息

项目摘要

Funding for this award will support US participants at a workshop on ``Homogeneous Dynamics and Geometry in Higher-Rank Lie Group'' to be held June 19--23, 2023, at Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, France. The aim of the workshop is to bring together two intellectual communities that have recently made significant advances in the study of discrete subgroups of higher rank semi-simple Lie groups: the homogeneous dynamics community and the higher rank Teichmuller theory community. The event is timely, since techniques from homogenous dynamics are becoming increasingly prominent in the study of discrete subgroups of Lie groups in both fields. Each morning there will be two mini-course lectures, intended to introduce researchers to techniques from both fields, while the afternoon will be devoted to research lectures. Bringing together these two groups will lead to further interactions and will accelerate development in these exciting areas. The organizers are committed to funding a diverse group of mathematicians.Homogeneous dynamics deals with flows on the quotients of Lie groups by discrete subgroups. There is a well-developed, now classical, study of orbit closures, measure classifications, counting and equidistribution results in homogeneous spaces of semisimple Lie groups of finite volume, i.e. when the discrete subgroup is a lattice. These ideas have had many applications in seemingly unrelated areas, for example, the solutions of the Oppenheim and Littlewood conjectures in number theory, and more recently in Teichmuller dynamics. In the last decade, there has been significant progress in extending this theory to study discrete subgroups of rank one Lie groups which are not lattices. The fundamental tool in this work is the theory of Patterson-Sullivan measures associated to actions of discrete subgroups on the geometric boundaries of hyperbolic spaces. The time is ripe for the pursuit of generalizations of these works to higher rank homogeneous spaces of infinite co-volume. This theory has already seen exciting preliminary development in the context of Anosov representations.Further details about the workshop, including a full list of speakers, are available at the conference website: https://indico.math.cnrs.fr/event/8759/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的资金将支持美国参与者参加将于2023年6月19日至23日在法国布雷斯-苏尔-伊维特高等科学研究所举行的“高阶李群中的齐次动力学和几何”研讨会。该研讨会的目的是汇集两个知识界,最近取得了显着进展,在研究离散子群的高阶半单李群:齐次动力学社区和高阶Teichmuller理论社区。 这一事件是及时的,因为齐次动力学的技术在这两个领域的李群离散子群的研究中变得越来越突出。每天上午将有两个迷你课程讲座,旨在向研究人员介绍这两个领域的技术,而下午将专门用于研究讲座。将这两个群体聚集在一起将导致进一步的互动,并将加速这些令人兴奋的领域的发展。 组织者致力于资助一个不同的数学家团体。齐次动力学处理离散子群的李群的等价物上的流动。有一个发达的,现在经典的,研究轨道封闭,措施分类,计数和equidistribution结果在齐性空间的半单李群的有限体积,即当离散子群是一个格。这些想法在看似无关的领域有许多应用,例如,数论中的奥本海姆和利特尔伍德定理的解,以及最近的泰希穆勒动力学。 在过去的十年中,有显着的进展,扩大这一理论研究离散子群的秩一李群,而不是格。在这项工作中的基本工具是与双曲空间的几何边界上的离散子群的行动相关的Patterson-Sullivan措施理论。时机已经成熟的追求推广这些作品更高的秩齐性空间的无限合作体积。 这个理论已经在Anosov的陈述中得到了令人兴奋的初步发展。关于研讨会的更多细节,包括演讲者的完整名单,可以在会议网站上找到:https://indico.math.cnrs.fr/event/8759/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Canary其他文献

The pressure metric for Anosov representations
  • DOI:
    10.1007/s00039-015-0333-8
  • 发表时间:
    2015-06-20
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Martin Bridgeman;Richard Canary;François Labourie;Andres Sambarino
  • 通讯作者:
    Andres Sambarino
A new foreword for Notes on Notes of Thurston
《瑟斯顿笔记笔记》的新前言
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Canary
  • 通讯作者:
    Richard Canary
Entropy rigidity for cusped Hitchin representations
尖点希钦表示的熵刚性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Canary;Tengren Zhang;Andrew M. Zimmer
  • 通讯作者:
    Andrew M. Zimmer
Quasiconformal Homogeneity after Gehring and Palka
  • DOI:
    10.1007/s40315-014-0057-z
  • 发表时间:
    2014-03-29
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Petra Bonfert-Taylor;Richard Canary;Edward C. Taylor
  • 通讯作者:
    Edward C. Taylor

Richard Canary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Canary', 18)}}的其他基金

Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    2304636
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Conference: Midwest Research Experience for Graduates (MREG) 2023
会议:中西部毕业生研究经验 (MREG) 2023
  • 批准号:
    2317485
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Deformation Spaces of Geometric Structures
几何结构的变形空间
  • 批准号:
    1906441
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Workshop on Groups, Geometry and Dynamics
群、几何与动力学研讨会
  • 批准号:
    1825533
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
  • 批准号:
    1564362
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Geometry of Groups in Montevideo
蒙得维的亚的群几何
  • 批准号:
    1561533
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Deformation spaces of geometric structures
几何结构的变形空间
  • 批准号:
    1306992
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Deformation spaces of hyperbolic 3-manifolds
双曲3流形的变形空间
  • 批准号:
    1006298
  • 财政年份:
    2010
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Generalized Branched Coverings and Parameterizations
广义分支覆盖和参数化
  • 批准号:
    0757732
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
  • 批准号:
    0554239
  • 财政年份:
    2006
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了