Local or global characteristic numbers of complex projective hypersurfaces and the resolution or improvement of their singularities
复杂射影超曲面的局部或全局特征数及其奇点的解析或改进
基本信息
- 批准号:15540085
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1)Let H_i:f_i=0 (1【less than or equal】i【less than or equal】3) be non-singular hypersurfaces in P^4(C), which intersect transversely each other. Then the hypresurface defined by the equation f=A(f_1f_2f_3)+B(f_1f_2)^2+C(f_2f_3)^2+D(f_3f_1)^2=0 in P^4(C), where A, B, C, and D are sufficiently general homogeneous polynomials in 5 variables of appropriate degrees, has the quasi-ordinary singularity (X,0) defined locally by the equation (xy)^2+(yz)^2+(zx)^2+wxyz=0 other than ordinary double points, ordinary triple points and cuspidal points. Regarding the normalization (X^*,0) of (X,0), we have proved that it is : (i)rational and of multiplicity 4, (ii)rigid under small deformations, (iii)Cohen-Macaulay, (iv)Gorenstein of index 2, (v)terminal, and so canonical.(2)We denote by X the hypersurface defined by f=0 in (1), and by D, T, C and Σq the double point locus, triple point locus, cuspidal point locus and quadruple point locus of X, respectively. With these notations, we have proved that the Segre classes of X are given as follows : s(J,X)_0= [X]^2[D]-2[D]^2+5[X][T]+[K_<P4>][C]-σ^*[kc^*]-59[Σq], s(J,X)_1=-[X][D]-3[T]+2[C], s(J,X)_2=2[D], where σ:C^*→C is the normalization of C, and [kc^*] the canonical class of C^*. By this, we have obtained a formula which gives the class number of X in P^4(C). Furthermore, by use of a linear pencil consisting of hyperlane sections of X (Lefschetz pencil), we have the following formula concerning the Euler number _X(X^*) of the normalization X^* of X : _X(X^*)-_X(X_0^*)=deg[k_<C0>]-deg[k_<C^*>]-70#[Σq], where X_0 is a hypersurface in P^4(C) whose degrees of the various singular loci are the same as those of X, but without quadruple points, X_0^* the normalization of X_0, _X(X_0^*) the Euler number of X_0^*, and [k_<C0>] the canonical class of the cupidal curve C_0(non-singular) of X_0.
(1)设H_i:f_i=0(1【小于等于】i【小于等于】3)为P^4(C)中的非奇异超曲面,它们彼此横向相交。在P^4(C)中,由方程f=A(f_1f_2f_3)+B(f_1f_2)^2+C(f_2f_3)^2+D(f_3f_1)^2=0所定义的超曲面,其中A、B、C、D是五变量的适当次充分一般齐次多项式,除了普通的双点、普通的三点和尖点外,局部具有由方程(xy)^2+(yz)^2+(zx)^2+wxyz=0所定义的拟普通奇点(X,0)。关于(X,0)的归一化(X^*,0),我们证明了它是:(i)有理且多重4,(ii)在小变形下是刚性的,(iii)Cohen-Macaulay, (iv)指标2的Gorenstein, (v)终端,因此是正则化的。(2)用X表示(1)中f=0定义的超曲面,用D、T、C和Σq分别表示X的双点轨迹、三点轨迹、尖点轨迹和四点轨迹。利用这些符号,我们证明了X的Segre类如下:s(J,X)_0= [X]^2[D]-2[D]^2+5[X][T]+[K_<P4>][C]-σ^*[kc^*]-59[Σq], s(J,X)_1=-[X][D]-3[T]+2[C], s(J,X)_2=2[D],其中σ:C^*→C是C的正则化类,[kc^*]是C的正则化类。由此,我们得到了给出P^4(C)中X的类数的公式。更进一步,利用由X的超线段组成的线性铅笔(Lefschetz铅笔),我们得到了关于X的归一化X^*的欧拉数_X(X^*)的公式:_X(X^*)-_X(X_0^*)=deg[k_<C0 b>]-deg[k_<C^*>]-70#[Σq],其中X_0是P^4(C)中的一个超曲面,其各奇异轨迹的度数与X的度数相同,但没有四重点,X_0^*是X_0的归一化,_X(X_0^*)是X_0^*的欧拉数,[k_<C0>]是X_0的丘次曲线C_0(非奇异)的正则类。
项目成果
期刊论文数量(60)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Chern numbers of the normalization of an algebraic threefold with ordinary singuralities
具有普通奇异性的代数三重标准化的陈数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Miyajima;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi
- 通讯作者:S.Tsuboi
On certain hypersurfaces with non-isolated singularities in P^4(C)
在 P^4(C) 中某些具有非孤立奇点的超曲面上
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:K.Miyajima;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Yokura;S.Tsuboi;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;T.Aikou;S.Tsuboi;S.Tsuboi
- 通讯作者:S.Tsuboi
The Euler number of the normalization of an algebraic threefold with ordinary singularities
具有普通奇点的代数三重标准化的欧拉数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Miyajima;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Yokura;S.Tsuboi;S.Yokura;S.Tsuboi
- 通讯作者:S.Tsuboi
Infinitesimal mixed Torelli problem for algebraic surfaces with ordinary singularities,I
具有普通奇点的代数曲面的无穷小混合 Torelli 问题,I
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Miyajima;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Yokura;S.Tsuboi;S.Yokura;S.Tsuboi;S.Tsuboi
- 通讯作者:S.Tsuboi
Some remarks on projectively flat complex Finsler metrics
关于投影平坦复芬斯勒度量的一些评论
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Miyajima;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Yokura;S.Tsuboi;S.Yokura;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;S.Tsuboi;T.Aikou
- 通讯作者:T.Aikou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUBOI Shoji其他文献
TSUBOI Shoji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUBOI Shoji', 18)}}的其他基金
Topological and analytical study on complex projective hypersurfaces with quasi-ordinary singularities
具有拟普通奇点的复杂射影超曲面的拓扑与分析研究
- 批准号:
19540093 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A topological and analytical study on three dimensional singular complex projective hypersurfaces
三维奇异复射影超曲面的拓扑分析研究
- 批准号:
13640083 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Logarithmic deformations of complex projective hypersurfaces with ordinary singularities and their period maps
具有普通奇点的复杂射影超曲面的对数变形及其周期图
- 批准号:
11640086 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)