A topological and analytical study on three dimensional singular complex projective hypersurfaces

三维奇异复射影超曲面的拓扑分析研究

基本信息

  • 批准号:
    13640083
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

(1) Let Y be an algebraic hypersurface with ordinary singularities, i.e., ordinary n-ple points, ordinary cuspidal points and stationary points, in the 4-dimensional complex projective space, and let X be its normalization. For such Y and X, we have proved numerical formulas which describe the Chem numbers c_1(X)^3, c_1(X)c_2(X), c_3(X) of X in terms of numerical characteristics of Y and its singular locus. As an application, we have derived a numerical formula which gives the Euler-Poincare characteristic of X with coefficients in the sheaf of holomorphic vector fields on X.(2) We have given an example of hypersurfaces which have ordinary n-ple points (2≦n≦4), ordinary cuspidal points and degenerate ordinary triple points only as singularities, and whose normalizations have isolated rational quadruple points only as singularities. From Schlessinger's criterion, it follows that these isolated singular points are rigid under small deformations.(3) For a (n+1)-dimensional complex algebraic manifold X, embedded in a projective space, and its non-singular hyperplane section Y which is sufficiently ample, we have proved the following:(a) F^kH^p(X-Y,C)【similar or equal】I^p _k(X,(p+1)Y), F^kH^p(X,C)_0【similar or equal】I^p _k(X,(p+1)Y)_0 (0≦k≦p, 0≦p≦n+1),(b) F^kGr^<w[q]> _qH^p(X-Y,C)【similar or equal】I^p _k(X,(p+1)Y)_0, F^kGr^<w[q]> _<q+1>H^p(X-Y,C)【similar or equal】 I^p _k(X,(p+1)Y)/I^p _k(X,(p+1)Y)_0 (0≦k≦p, 0≦p≦n+1),(c) F^kH^n(Y,C)_0 【similar or equal】Res(I^<n+1> _<k+1>(X,(n+2)Y))【symmetry】r*(I^n _k(X,(n+1)Y')_0,where H^p(X,C)_0 and H^p(Y,C)_0 denote the p-th cohomology of X and Y, respectively, and I^p _k(X,(p+1)Y) denotes the De Rham cohomology of closed rational differential forms which has poles of order p-k+1 at most along Y, I^p _k(X,(p+1)Y)_0 the subspace of I^p _k(X,(p+1)Y) generated by closed rational differential forms of the second kind, and Y' a sufficiently ample hyperplane section of X, intersecting with X transversely.
(1)设Y是具有普通奇点的代数超曲面,即,在4维复射影空间中,定义了n个普通点、普通尖点和驻点,并设X为它们的正规化。对于这样的Y和X,我们根据Y及其奇异轨迹的数值特征,证明了描述X的化学数c_1(X)^3,c_1(X),c_2(X),c_3(X)的数值公式。作为应用,我们导出了系数在X上全纯向量场层中的X的Euler-Poincare特征线的数值公式。(2)我们给出了一个超曲面的例子,它的普通n重点(2 <$n <$4)、普通尖点和退化普通三重点只作为奇点,而它的正规化只以孤立有理四重点作为奇点。根据Schlessinger准则,这些孤立奇点在小变形下是刚性的。(3)对于嵌入在射影空间中的(n+1)维复代数流形X,以及它的充分充裕的非奇异超平面截面Y,我们证明了以下结果:(a)F^kH^p(X-Y,C)[相似或相等]I^p _k(X,(p+1)Y),F^kH^p(X,C)_0[相似或相等]I^p _k(X,(p+1)Y)_0(0 k p,0 p n+1),(B)F^kGr^<w[q]> _qH^p(X-Y,C)[相似或相等]I^p _k(X,(p+1)Y)_0,F^kGr^<w[q]> _<q+1>H^p(X-Y,C)[相似或相等] I^p _k(X,(p +1)Y)/I^p _k(X,(p+1)Y)_0(0 k p,0 p n+1),(c)F^kH^n(Y,C)_0 [相似或相等]Res(I^<n+1> _<k+1>(X,(n+2)Y))[对称性]r*(I^n _k(X,(n+1)Y ')_0,其中H^p(X,C)_0和H^p(Y,C)_0分别表示X和Y的p阶上同调,I^p _k(X,(n +1)Y')_0,(p+1)Y)表示闭有理微分形式的De Rham上同调,它沿沿着Y至多有p-k+1阶极点,I^p _k(X,(p+1)Y)_0是由第二类闭有理微分形式生成的I^p _k(X,(p+1)Y)的子空间,Y'是X的一个足够充分的超平面截面,与X横向相交。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and Its Application. 123. 283-296 (2002)
S.Yokura:“可构造函数和格洛腾迪克变换的双变理论”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Tsuboi: "The Euler number of the non-singular normalization of an algebraic threefold with ordinary singulaities."Procccdings of the International Symposium on Singularity Theory and its Applications, Beijing University of Chemical Technology. 113-119 (
S.Tsuboi:“具有普通奇点的代数三重的非奇异归一化的欧拉数。”奇性理论及其应用国际研讨会论文集,北京化工大学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Yokura(with L.Ernstrom): "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica. Vol.8,No.1. 1-25 (2002)
S.Yokura(与 L.Ernstrom):“On bivariant Chern-Schwartz-MacPherson Class with Values in Chow groups”Selecta Mathematica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shoji Yokura: "Remarks on Ginzburg's bivariant Chem classes"Proc. Amer. Math. Soc.. Vol. 130. 3465-3471 (2002)
Shoji Yokura:“关于 Ginzburg 的双变化学类的评论”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceedings of the Japan-Korea joint Workshop in Math.2001, Department of Mathematics, Yamaguchi Univ.. 115-124 (2002)
K.Miyajima:“正常孤立奇点边界上CR结构的变形理论”日韩数学联合研讨会论文集.2001,山口大学数学系。115-124(2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUBOI Shoji其他文献

TSUBOI Shoji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUBOI Shoji', 18)}}的其他基金

Topological and analytical study on complex projective hypersurfaces with quasi-ordinary singularities
具有拟普通奇点的复杂射影超曲面的拓扑与分析研究
  • 批准号:
    19540093
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Local or global characteristic numbers of complex projective hypersurfaces and the resolution or improvement of their singularities
复杂射影超曲面的局部或全局特征数及其奇点的解析或改进
  • 批准号:
    15540085
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Logarithmic deformations of complex projective hypersurfaces with ordinary singularities and their period maps
具有普通奇点的复杂射影超曲面的对数变形及其周期图
  • 批准号:
    11640086
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Topological and analytical study on complex projective hypersurfaces with quasi-ordinary singularities
具有拟普通奇点的复杂射影超曲面的拓扑与分析研究
  • 批准号:
    19540093
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Logarithmic deformations of complex projective hypersurfaces with ordinary singularities and their period maps
具有普通奇点的复杂射影超曲面的对数变形及其周期图
  • 批准号:
    11640086
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了