Study on symplectic space and its representation-theoretic structure
辛空间及其表示理论结构研究
基本信息
- 批准号:15540092
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator Takakura, in collaboration with Taro Suzuki, studied invariants of symplectic quotients for the products of coadjoint orbits of compact Lie groups, and obtained the following results.First, for any simply-connected compact simple Lie group, we derived a general formula which expresses the above invariant as an infinite series. Secondly, for the 3 dimensional special unitary group, we obtained an another formula which expresses the invariant as a finite sum. Both of them are generalizations of earlier results by Takakura for the 2 dimensional special unitary group. Note that the first result may be regarded as an analogue of Witten's volume formula in 2 dimensional Yang-Mills theory. Our method is to reduce, via the fundamental theorem for symplectic quotients, the computation of characteristic numbers to a problem of representation theory of compact Lie groups or complex Lie algebras. More explicitly, we consider the trivial part of the tensor product of irreducib … More le representations and its asymptotic behavior. We can analyze them by the Weyl integration formula and the Verlinde identity for affine Lie algebras.On the other hand, the investigator Miyoshi obtained a result on the smooth representability of the Euler classes of surface bundles.The investigator Ochiai obtained results on non-commutative harmonic oscillator and the connection problem for the Heun differential equation, on polynomials associated with the hypergeometric functions with finite monodromy groups (with M.Yoshida), on absolute derivations and zeta functions (with N.Kurokawa and M.Wakabayashi), on explicit formulas for solutions of some vector-valued hypergeometric differential equations (with M.Fujii), on classification of completely integrable systems with large degree of freedom (with T.Oshima), on intersection theory for located cycles (with K.Mimachi and M.Yoshida), and on number-theoretic property for coefficients of certain polynomial solutions of the Painleve equations (with M.Kaneko). Less
首席调查员高库拉(Takakura)与塔罗铃木(Taro Suzuki)合作,研究了紧凑型谎言组的coadexhighinexhight Orbits产品的符合性报价,并获得了以下结果。首先,对于任何简单紧凑的简单谎言组,我们都表达了上述无效系列的普通公式。其次,对于三维特殊统一组,我们获得了另一个表达不变为有限总和的公式。他们俩都是高仓对2维特别统一组的早期结果的概括。请注意,第一个结果可以被视为在2维杨米尔斯理论中Witten体积公式的类似物。我们的方法是通过对称配额的基本理论来减少特征数量的计算,以指示紧凑型谎言组或复杂谎言代数的代表问题。更明确地,我们考虑了Irreducib的张量产物的琐碎部分……更多的LE代表及其不对称行为。我们可以通过Weyl整合公式和仿生的Verlinde身份进行分析,另一方面,研究人员Miyoshi获得了欧拉表面捆绑包的平稳表示的结果。单型组(与M. Yoshida),在绝对推导和Zeta函数上(具有N.Kurokawa和M.Wakabayashi),在明确的公式上,用于某些矢量价值超几何微分方程的解决方案(与M.Fujii)(具有M.Fujii)(与M.Fujii)(与t.soshima的范围相互作用(与t.oshima)的分类(以及t.soshima)的分类( K.Mimachi和M.Yoshida),以及用于阵亡的pachleve方程某些多项式溶液系数(带有M.Kaneko)的数字理论特性。较少的
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Absolute derivations and zeta functions
绝对导数和 zeta 函数
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:N.Kurokawa;H.Ochiai;M.Wakayama
- 通讯作者:M.Wakayama
高倉 樹: "書評 Ana Canas da Silva : Lecture on Symplectic Geometry (Springer Lecture Notes in Math., 1764)"数学. 55・3. 332-335 (2003)
高仓树:“书评安娜·卡纳斯·达席尔瓦:辛几何讲座(施普林格数学讲座笔记,1764)”数学55・3。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Non-commutative harmonic oscillators and the connection problem for the Heun differential equation
非交换简谐振子与 Heun 微分方程的联结问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Hamada;J.Inoguchi;Hiroyuki Ochiai
- 通讯作者:Hiroyuki Ochiai
On coefficients of Yablonskii-Vorob'ev polynomials
关于 Yablonskii-Vorobev 多项式的系数
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:M.Kaneko;H.Ochiai
- 通讯作者:H.Ochiai
On representability of the smooth Euler class
光滑欧拉类的可表示性
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yoshihiko Suyama;Yoshihiko Suyama;Sigeaki Miyoshi
- 通讯作者:Sigeaki Miyoshi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAKURA Tatsuru其他文献
TAKAKURA Tatsuru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAKURA Tatsuru', 18)}}的其他基金
Study of global structure and invariants of symplectic quotients
辛商的全局结构和不变量的研究
- 批准号:
21540094 - 财政年份:2009
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on geometry and various invariants of symplectic space
几何和辛空间的各种不变量的研究
- 批准号:
17540095 - 财政年份:2005
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Submanifolds with conical singularities in manifolds with special holonomy
特殊完整流形中具有圆锥奇点的子流形
- 批准号:
17K14181 - 财政年份:2017
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Group actions on symplectic manifolds and their quantization
辛流形上的群作用及其量子化
- 批准号:
23540072 - 财政年份:2011
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation-theoretic invariants and moment map
表示理论不变量和矩图
- 批准号:
23540203 - 财政年份:2011
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
運動量写像に関するコホモロジー理論の一般化及び平坦バンドルのモジュライへの応用
关于动量映射的上同调理论的推广及其在平丛模中的应用
- 批准号:
04J10136 - 财政年份:2004
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ricci-flat manifolds and the global structure of their moduli spaces
里奇平坦流形及其模空间的全局结构
- 批准号:
15540062 - 财政年份:2003
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)