Infinite Method in Finite Model Theory and its application for aiming to solve Lachlan's conjecture.
有限模型理论中的无限方法及其应用,旨在解决拉克兰猜想。
基本信息
- 批准号:15540104
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of generic structure is obtained by generalizing the construction of random graphs. This can be done as follows.Let K be a class of finite structure. We assume there is a dimension function δ on K. We also assume that with respect to δ,K has the amalgamation property. Then by amalgamating structures in K rather randomly, we can get an inifinite (countable) strurture. This infinite structure M is called a K-generic structure. M is characterize by the following two properties (1)every finite substructure of M is isomorphic to a member in K, (2)If A<B in K, and A<M then M has an isomorphic copy of B over A.The first condition can be stated by sentences but unfortunately the second one cannot be expressed by sentences. This is because, the relation A<M cannot be expressed by a single sentence. We introduced the notion of strong amalgamation property, and prove that if the class K has the strong amalgamation property then the theory of K-generic models is axiomatized. This work is a joint work with Hirotaka Kikyo and Koichiro Ikeda.
一般结构的概念是通过推广随机图的构造而得到的。这可以通过如下方法来实现:设K是一类有限结构。我们假设K上存在一个维数函数δ。我们还假设K关于δ具有合并性质。然后通过相当随机地合并K中的结构,我们可以得到一个无穷(可数)结构。这个无限结构M称为K-类属结构。M具有以下两个性质:(1)M的每个有限子结构同构于K中的一个成员;(2)如果A<K中的B,且A<M,则M有A上B的同构副本。这是因为,关系A<M不能用一个句子来表达。引入了强合并性质的概念,证明了如果类K具有强合并性质,则K-一般模型理论是公理化的。本作品是与Hirotaka Kikyo和Koichiro Ikeda的合作作品。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masanori Itai, Akito Tsuboi, Kentaro Wakai: "Construction of saturated quasi-minimal structures"Journal of Symbolic Logic. (掲載予定)(to appear). (2003)
Masanori Itai、Akito Tsuboi、Kentaro Wakai:“饱和准最小结构的构造”符号逻辑杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On model theoretic simplicity-a study on n-simplicity (in Japanese)
论模型理论的简单性——n-简单性的研究(日文)
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Akito Tsuboi
- 通讯作者:Akito Tsuboi
Masahiro Shioya: "A saturated stationary subset of $P_\kappa\kappa^+$"Math.Res.Lett.. 10. 493-500 (2003)
Masahiro Shioya:“$P_kappakappa^ $ 的饱和平稳子集”Math.Res.Lett.. 10. 493-500 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUBOI Akito其他文献
TSUBOI Akito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUBOI Akito', 18)}}的其他基金
Omitting Types Theorem and Infinite Combinatrics
省略类型定理和无限组合
- 批准号:
25400190 - 财政年份:2013
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Omitting types theorem and its application
省略类型定理及其应用
- 批准号:
22540110 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of first order model theory and its application
一阶模型理论及其应用研究
- 批准号:
19540111 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of functional change of swallowing with ageing
吞咽功能随衰老变化的研究
- 批准号:
19592222 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A basic study of the facial muscle function applied to the physical and psychological rehabilitation
面部肌肉功能应用于身心康复的基础研究
- 批准号:
14571835 - 财政年份:2002
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simplicity and Amalgamation in Model Theory
模型理论的简单性和融合
- 批准号:
13640099 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of theories with finitely many countable models.
研究具有有限多个可数模型的理论。
- 批准号:
11640100 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
CAREER: Live Programming for Finite Model Finders
职业:有限模型查找器的实时编程
- 批准号:
2337667 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Foundations of the Finite Model Theory of Concatenation
级联有限模型理论的基础
- 批准号:
EP/T033762/1 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Application of saturated structures to the study of finite model theory
饱和结构在有限模型理论研究中的应用
- 批准号:
21K03336 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symbolic Symmetry Breaking in Finite Model Finding
有限模型查找中的符号对称破缺
- 批准号:
554078-2020 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Algebraic Methods in Finite Model Theory
有限模型理论中的代数方法
- 批准号:
324066354 - 财政年份:2016
- 资助金额:
$ 2.05万 - 项目类别:
Research Fellowships
EAPSI: The Development of a High-Resolution Finite Model of the Mitral Valve Apparatus Incorporating
EAPSI:二尖瓣装置高分辨率有限模型的开发
- 批准号:
0813097 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Fellowship Award
3D NON LINEAR KINEMATIC FINITE MODEL: HUMAN CERVICAL SPINE IMPACT LOADING
3D 非线性运动有限模型:人体颈椎冲击载荷
- 批准号:
6295222 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别:
3D NON LINEAR KINEMATIC FINITE MODEL: HUMAN CERVICAL SPINE IMPACT LOADING
3D 非线性运动有限模型:人体颈椎冲击载荷
- 批准号:
6282567 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别:
3D NON LINEAR KINEMATIC FINITE MODEL: HUMAN CERVICAL SPINE IMPACT LOADING
3D 非线性运动有限模型:人体颈椎冲击载荷
- 批准号:
6122532 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别: