Application of the discrete integrable systems on the semi-infinite lattice to the system of the bi-orthogonal polynomials

半无限格上离散可积系统在双正交多项式系统中的应用

基本信息

  • 批准号:
    15540119
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to construct the theory of the spectral transformations of the bi-orthogonal polynomials and the continued fractions from the point of the view of the discrete integrable systems on the semi-infinite lattice. We mainly study the relationship between the bi-orthogonal polynomials which have the three-term relations and the Toda-type discrete integrable systems. We give main results:・The R1 type and the R2 type discrete integrable systems associated with the generalized eigen value problemsWe study the bilinear equations of the R1 type and the R2 type discrete integrable systems. Then we clarify the relationship with the Toda type discrete systems including the nonautonomous discrete Toda equation and the relativistic discrete Toda equation, and derive their Backlund transformations.・The discrete integrable system associated with the rational interpolation functionsWe derive a discrete integrable system associated with Frobenius-Stickelberger's pioneering research on the rational interpolation functions and Thiele's theory on the Pade approximations. Moreover we give the bilinear equations of this integrable system and show that these bilinear equations are derived from the discrete KP equation and the two-dimensional discrete Toda equation. A generalised Lotka-Volterra equation and a generalized epsilon algorithm are presented.・The nonautonomous discrete Toda equatioFrom the research on the bilinear equation of the R1 chain and the R2 chain, we have new results on the nonautonomous discrete Toda equation. The Darboux transformations of the nonautonomous discrete Toda equation are derived from the Darboux transformation of the discrete KP equation and the two-dimensional discrete Toda equation.
本研究的目的是从半无限点阵上离散可积系统的角度构建双正交多项式和连分数的谱变换理论。我们主要研究具有三项关系的双正交多项式与户田型离散可积系统之间的关系。我们给出的主要结果:·与广义特征值问题相关的R1型和R2型离散可积系统我们研究了R1型和R2型离散可积系统的双线性方程。然后我们阐明了与Toda型离散系统(包括非自治离散Toda方程和相对论离散Toda方程)的关系,并导出了它们的Backlund变换。・与有理插值函数相关的离散可积系统我们导出了与Frobenius-Stickelberger对有理插值函数的开创性研究和Thiele的Pade理论相关的离散可积系统 近似值。此外,我们还给出了该可积系统的双线性方程,并表明这些双线性方程是由离散KP方程和二维离散Toda方程导出的。提出了广义Lotka-Volterra方程和广义epsilon算法。 ・非自治离散Toda方程通过对R1链和R2链双线性方程的研究,我们对非自治离散Toda方程有了新的结果。非自治离散Toda方程的达布变换是由离散KP方程和二维离散Toda方程的达布变换推导出来的。

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Nagai: "An integrable mapping with fractional difference"Journal of the Physical Society of Japan. 72. 2181-2183 (2003)
A.Nagai:“具有分数差的可积映射”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Determinant structure of non-autonomous Toda-type integrable systems
非自治Toda型可积系统的行列式结构
A.Mukaihira, S.Tsujimoto: "Determinant structure of R_1 type discrete integrable system"Journal of Physics A : Mathematical and General. 37. 4557-4565 (2004)
A.Mukaihira,S.Tsujimoto:“R_1型离散可积系统的行列式结构”物理学杂志A:数学与一般。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Nagai: "On a certain fractional q-difference and its eigen function"Journal of Nonlinear Mathematical Physics. 10Suppl.2. 133-142 (2003)
A.Nagai:“论某个分数q差及其本征函数”非线性数学物理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
実対称3重対角行列の高精度ツイスト分解とその特異値分解への応用
实对称三对角矩阵的高精度扭曲分解及其在奇异值分解中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUJIMOTO Satoshi其他文献

TSUJIMOTO Satoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUJIMOTO Satoshi', 18)}}的其他基金

Common soldiers and their families in eighteenth-century Britain
十八世纪英国的普通士兵及其家人
  • 批准号:
    25884031
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Research on systems of the biorthogonal functions, discrete andultradiscrete integrable systems, and their applications
双正交函数系统、离散和超离散可积系统及其应用研究
  • 批准号:
    22540224
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of dopamine receptors in the marmoset brain : a PET study
狨猴大脑中多巴胺受体的分布:PET研究
  • 批准号:
    22700340
  • 财政年份:
    2010
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the algebraic structure of theToda type non-autonomous discrete integrable systems and its applications
户田型非自治离散可积系统的代数结构及其应用研究
  • 批准号:
    18540214
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the orthogonal polynomials, the continued fractions and the discrete integrable systems
正交多项式、连分式和离散可积系统的研究
  • 批准号:
    12640121
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of orbital mechanics from discrete system to continuous system for space flexible structure
空间柔性结构轨道力学从离散系统到连续系统的发展
  • 批准号:
    20K21045
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
NewDevelopments of Discrete-System Algorithmics Based on Complexes
基于复形的离散系统算法的新进展
  • 批准号:
    10205204
  • 财政年份:
    1998
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Discrete System Theory and Large-Scale Optimization Methods Based on Binary Decision Diagrams and
基于二元决策图的离散系统理论和大规模优化方法
  • 批准号:
    09480050
  • 财政年份:
    1997
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了