Studies on the orthogonal polynomials, the continued fractions and the discrete integrable systems
正交多项式、连分式和离散可积系统的研究
基本信息
- 批准号:12640121
- 负责人:
- 金额:$ 1.98万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last decades, discrete integrable system has been getting a lot of attention from the viewpoints of difference scheme and algorithm. Already there have been many discussions about relations between continuous-time integrable system and orthogonal polynomials. There are only a few studies on the relations between full-discretised (discrete time and space) systems and orthogonal polynomials fully clarified, such as the discrete integrable system (Toda, Lotka-Volterra) and classical orthogonal polynomials by Spiridonov and Zhedanov. Hence the purpose of this studies is to clarify the relations between the discrete integrable system and the orthogonal polynomials and to develop the Numerical algorithms related to the orthogonality. At first, we pick up the discrete hungry Lotka-Volterra equation and the coupled KP equation. We probe them by means of Hirota's tau-function and develop the relations.
近几十年来,离散可积系统在差分格式和算法方面得到了广泛的关注。关于连续时间可积系统与正交多项式之间的关系,已有许多讨论。对全离散(离散时空)系统与正交多项式之间的关系的研究很少,如Spiridonov和Zhedanov提出的离散可积系统(户田,Lotka-Volterra)与经典正交多项式之间的关系。因此,本研究的目的是阐明离散可积系统与正交多项式之间的关系,并发展与正交性有关的数值算法。首先,我们选取离散的饥饿Lotka-Volterra方程和耦合的KP方程。我们通过Hirota的τ函数来探讨它们,并发展了它们之间的关系。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R.Hirota, M.Iwao, S.Tsujimoto: "Soliton equations exhibiting "Pfaffian Solutions""Glasgow Math. J.. 43A. 33-41 (2001)
R.Hirota、M.Iwao、S.Tsujimoto:“展示“普法夫解”的孤子方程”格拉斯哥数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
C.R. Gilson, J.J.C. Nimmo and S. Tsujimoto: "Pfaffianisation of the discrete KP Equation"J. Phys. A: Math. Gen.. 34. 10569-10575 (2001)
C.R.吉尔森,J.J.C.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Tsujimoto: "On a discrete analogue of the two-dimensional Toda lattice hierarchy"Publ. RIMS Kyoto University. 38. 113-133 (2002)
S. Tsujimoto:“关于二维 Toda 晶格层次结构的离散模拟”Publ。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
C.R.Gilson, J.J.C.Nimmo, S.Tsujimoto: "Pfaffianisation of the discrete KP Equation"J. Phys. A : Math. Gen.. 34. 10569-10575 (2001)
C.R.Gilson、J.J.C.Nimmo、S.Tsujimoto:“离散 KP 方程的普法夫化”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tsujimoto: "On a discrete analogue of the two-dimensional Toda lattice hierarchy"Publ. RIMS Kyoto University. 38. 113-133 (2002)
S.Tsujimoto:“关于二维 Toda 晶格层次结构的离散模拟”Publ。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUJIMOTO Satoshi其他文献
TSUJIMOTO Satoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUJIMOTO Satoshi', 18)}}的其他基金
Common soldiers and their families in eighteenth-century Britain
十八世纪英国的普通士兵及其家人
- 批准号:
25884031 - 财政年份:2013
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research on systems of the biorthogonal functions, discrete andultradiscrete integrable systems, and their applications
双正交函数系统、离散和超离散可积系统及其应用研究
- 批准号:
22540224 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distribution of dopamine receptors in the marmoset brain : a PET study
狨猴大脑中多巴胺受体的分布:PET研究
- 批准号:
22700340 - 财政年份:2010
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on the algebraic structure of theToda type non-autonomous discrete integrable systems and its applications
户田型非自治离散可积系统的代数结构及其应用研究
- 批准号:
18540214 - 财政年份:2006
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of the discrete integrable systems on the semi-infinite lattice to the system of the bi-orthogonal polynomials
半无限格上离散可积系统在双正交多项式系统中的应用
- 批准号:
15540119 - 财政年份:2003
- 资助金额:
$ 1.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Analysis and Classification of Differential Equations with Orthogonal Polynomial Eigenfunctions
正交多项式本征函数微分方程的分析与分类
- 批准号:
9970478 - 财政年份:1999
- 资助金额:
$ 1.98万 - 项目类别:
Continuing Grant