Research on diffusion processes and fuzzy set valued random variables

扩散过程和模糊集值随机变量的研究

基本信息

  • 批准号:
    15540127
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

Study of random variables taking values in general spaces might be an important theme both for theoretical and applied mathematics. One of the objects of this research is to study limit theorems for fuzzy sets-valued random variables. It is worth to note that the target space looses separability with some topologies. One of the results of this research is having noticed that laws of large numbers, central limit theorems and martingale convergence theorems hold with respect to the uniform topology with which the fuzzy set space is not separable. We used the method exploiting monotone property and that reducing to the theory of empirical distribution by proving the integrability of the entropy in the procedure to let the mesh smaller.Although the large deviation principles are more sensitive to the separability, we obtained Cramer type large deviation principles for as far as the topology induced by Levy's metric, and also for Skorohod topology and uniform topology with a little strong assumptions. We gave an explicit example which satisfies our assumptions. This seems to be a counter example to a result in a preprint appearing in an internet. We also obtained Sanov type large deviation principles under a natural assumption. Although we can compute rate functions explicitly only in simple cases, one of them is a relative entropy of two measures.Also, with the investigator H.Matsumoto, we obtained that a cM-X process is Markov only when c=0,1,and 2,where X is a one-dimensional Brownnian motion with constant drift and M is its maximum process. This is another part of Levy's theorem(for c=1) and Pitman's theorem (for c=2).
研究在一般空间中取值的随机变量可能是理论数学和应用数学的一个重要主题。本文研究的对象之一是模糊集值随机变量的极限定理。值得注意的是,目标空间与某些拓扑失去了可分性。本研究的结果之一是注意到对于模糊集合空间不可分的一致拓扑,大数定律、中心极限定理和鞅收敛定理都成立。通过证明过程中熵的可积性,我们采用了利用单调性的方法,并将其简化为经验分布理论,使网格更小。虽然大偏差原理对可分性更为敏感,但对于Levy度规诱导的拓扑,我们得到了Cramer型大偏差原理,对于Skorohod拓扑和均匀拓扑,我们也采用了一些强假设。我们给出了一个明确的例子来满足我们的假设。这似乎是互联网上出现预印本的反例。在自然假设下,得到了Sanov型大偏差原理。虽然我们只能在简单的情况下显式地计算速率函数,但其中之一是两个度量的相对熵。此外,与研究者H.Matsumoto一起,我们得到cM-X过程仅在c=0,1和2时是马尔可夫的,其中X是一维布朗运动,具有恒定的漂移,M是它的最大过程。这是Levy定理(对于c=1)和Pitman定理(对于c=2)的另一部分。

项目成果

期刊论文数量(92)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Matsumoto: "Markov or non-Markov property of cM-X processes"Jour.Math.Soc.Japan. 56(To Appear). (2004)
H.Matsumoto:“cM-X 过程的马尔可夫或非马尔可夫性质”Jour.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Shioya: "Behavior of distant maximal geodesics in finitely connected two-dimensional Riemannian manifolds II"Geom.Dedicata. 103. 1-32 (2004)
T.Shioya:“有限连通二维黎曼流形中的远距离最大测地线的行为 II”Geom.Dedicata。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Behavior of distant maximal geodesies in finitely connected complete two-dimensional Riemannian manifolds II
有限连通完全二维黎曼流形中远距离最大测地线的行为 II
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Fujiwara;T.Shioya;S.Yamagata;T.Shioya
  • 通讯作者:
    T.Shioya
On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts
  • DOI:
    10.1239/aap/1046366105
  • 发表时间:
    2003-03
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    H. Matsumoto;M. Yor
  • 通讯作者:
    H. Matsumoto;M. Yor
Markov or non-Markov property of $cM-X$ processes
$cM-X$ 过程的马尔可夫或非马尔可夫性质
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Matsumoto;M.Yor;H.Matsumoto
  • 通讯作者:
    H.Matsumoto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OGURA Yukio其他文献

OGURA Yukio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OGURA Yukio', 18)}}的其他基金

Effects of temperature and volume of fluid intake on thermoregulatory and cardiovascular responses during prolonged exercise in the heat
长时间高温运动时温度和液体摄入量对体温调节和心血管反应的影响
  • 批准号:
    23500769
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sex-and menstrual cycle-related differences in heat loss responses, and the effects of physical training on the sex-related differences
热量损失反应与性别和月经周期相关的差异,以及体能训练对性别相关差异的影响
  • 批准号:
    19500556
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on diffusion processes and fuzzy valued stochastic analysis
扩散过程和模糊值随机分析的研究
  • 批准号:
    19540140
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on limit theorems for fuzzy set-valued random variables
模糊集值随机变量极限定理研究
  • 批准号:
    17540123
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic fuzzy analysis and its applications
随机模糊分析及其应用
  • 批准号:
    09440085
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probability theory related to analysis and geometry
与分析和几何相关的概率论
  • 批准号:
    07304064
  • 财政年份:
    1995
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
  • 批准号:
    532937-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Postdoctoral Fellowships
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
  • 批准号:
    532937-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Postdoctoral Fellowships
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
  • 批准号:
    532937-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Postdoctoral Fellowships
Exploration of stochastic phenomena disobeying the central limit theorem and development of innovative stochastic processes in the structural engineering
结构工程中不服从中心极限定理的随机现象的探索和创新随机过程的发展
  • 批准号:
    18K04334
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Why the Normal Distribution in the Central Limit Theorem with Finite Variance
为什么方差有限的中心极限定理中的正态分布
  • 批准号:
    512572-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    University Undergraduate Student Research Awards
Stein's Method of functional central limit theorem
泛函中心极限定理的斯坦因法
  • 批准号:
    1654155
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Studentship
CENTRAL LIMIT THEOREM AS AN APPROXIMATION FOR INTENSITY-BASED SCORING FUNCTION
作为基于强度的评分函数的近似的中心极限定理
  • 批准号:
    7420812
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
Tail Behavior of Sums of Random Variables With Applications To the Strong Law and the Central Limit Theorem
随机变量之和的尾部行为及其在强定律和中心极限定理中的应用
  • 批准号:
    8002335
  • 财政年份:
    1980
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了