Stochastic analysis on population genetics models with multiple factors of stochastic force
多因素随机力群体遗传模型的随机分析
基本信息
- 批准号:15540134
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The following stochastic models in population genetics were studied by means of the theory of stochastic processes.1. The concept of asymptotic conditional distribution proposed for some diffusion model in population genetics was generalized to the class of generalized one-dimensional diffusion processes and limit theorems on the asymptotic conditional distribution were proved. These theorems were applied to Bessel processes and birth and death processes. These theorems were also used to obtain asymptotic conditional distributions for population genetics models with stochastic factors of random drift and/or stochastic selection.2. The coalescent model and the Wright-Fisher model with mutation were formulated when the population sizes are stochastic processes. Effective sizes of population were defined to these models and their properties were investigated. The relation between these effective sizes and those for the diffusion model with mutation and the Wright-Fisher model without muta … More tion when population sizes are stochastic processes were studied. Effective sizes of the diffusion model and the Wright-Fisher model with mutation were shown to converge to that of the Wright-Fisher model without mutation when the mutation rate tends to zero.3. Extensive computer simulations of compensatory neutral mutation models in population genetics were performed to study the distribution function, the average and the variance of the time until fixation of double mutant to a diploid population. Three-dimensional diffusion models that approximate the discrete-time compensatory neutral mutation models were identified and partial differential equations for the average time until fixation of double mutant were obtained. Since it is difficult to solve these partial differential equations analytically, further approximations were considered for the three-dimensional diffusion models by one-dimensional diffusion models when, the rates of mutation and recombination are much smaller than the intensity of selection. Less
利用随机过程理论研究了群体遗传学中的以下随机模型。将种群遗传学中某些扩散模型的渐近条件分布概念推广到广义一维扩散过程,证明了渐近条件分布的极限定理。这些定理被应用于贝塞尔过程和生灭过程。这些定理还被用于获得具有随机漂移和/或随机选择的随机因素的种群遗传学模型的渐近条件分布。在种群规模为随机过程的情况下,分别建立了种群规模为随机过程的融合模型和带突变的Wright-Fisher模型。定义了这些模型的有效种群规模,并研究了它们的性质。这些有效尺度与具有突变的扩散模型和无突变…的Wright-Fisher模型的有效尺度之间的关系进一步研究了种群规模为随机过程时的情形。当突变率趋于零时,扩散模型和有突变的Wright-Fisher模型的有效规模收敛到无突变的Wright-Fisher模型的有效规模。对群体遗传学中的补偿性中性突变模型进行了广泛的计算机模拟,研究了双突变体对二倍体群体的分布函数、平均和方差。识别了近似离散时间补偿性中性突变模型的三维扩散模型,得到了双突变平均固定时间的偏微分方程式。由于这些偏微分方程组很难解析求解,当变异和重组率远小于选择强度时,考虑了一维扩散模型对三维扩散模型的进一步逼近。较少
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akinori Sano: "Coalescent process with fluctuating population size and its effective size"Theoretical Population Biology. 65. 39-48 (2004)
Akinori Sano:“种群规模波动的合并过程及其有效规模”理论种群生物学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Asymptotic conditional distributions related to one-dimensional generalized diffusion processes
与一维广义扩散过程相关的渐近条件分布
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on;M.Iizuka
- 通讯作者:M.Iizuka
Coalescent process with fluctuating population size and its effective size
群体规模波动的聚结过程及其有效规模
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Akinori Sano;Akinobu Shimizu;Masaru Iizuka
- 通讯作者:Masaru Iizuka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IIZUKA Masaru其他文献
IIZUKA Masaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IIZUKA Masaru', 18)}}的其他基金
Study on stochastic models of population genetics by means of the theories of stochastic processes
利用随机过程理论研究群体遗传学的随机模型
- 批准号:
21540143 - 财政年份:2009
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic analysis on models of population genetics
群体遗传学模型的随机分析
- 批准号:
18540137 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on stochastic models for the interaction between random drift and selection in population genetics
群体遗传学中随机漂移与选择相互作用的随机模型研究
- 批准号:
12640139 - 财政年份:2000
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on limit theorems related to stochastic models in pupulation genetics
幼虫遗传学随机模型相关极限定理的研究
- 批准号:
10640132 - 财政年份:1998
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Population Genetical Studies on Molecular Evolution and Polymorphism of DNA Sites Linked to Selected Sites
分子进化和与选定位点相关的 DNA 位点多态性的群体遗传学研究
- 批准号:
06640800 - 财政年份:1994
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Studies on the Synthesis of New Oligosaccharide by Bacillus subtilis Levansucrase and Biological activity of the Synthesized Sugar.
枯草芽孢杆菌左聚蔗糖酶合成新型低聚糖及合成糖生物活性的研究。
- 批准号:
61560105 - 财政年份:1986
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)