A study on stochastic models for the interaction between random drift and selection in population genetics
群体遗传学中随机漂移与选择相互作用的随机模型研究
基本信息
- 批准号:12640139
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study, the effects of the stochastic fluctuation of population size on the effective size of population are investigated. For this end, three models (Wright-Fisher mode, diffusion mode, coalescent model) with the fluctuation of population size are formulated and their properties are studied. In the literature, it is said that the effective size is equal to the harmonic mean of fluctuating population size when population size is not constant. J. H. Gillespie (University of California at Davis) found, however, some examples where the effective size is not equal to the harmonic mean when the population size fluctuates stochastically. In the case where population size fluctuates stochastically, it is important to know how the effective size is related to the harmonic mean and the arithmetic mean and the condition under which the effective size is equal to the harmonic mean. It is shown that the effective size is larger than the harmonic mean but it is smaller than the arithmetic mean for the diffusion model and the coalescent model. For the Wright-Fisher model, the effective size is larger (resp. smaller) than the harmonic mean if the fluctuation of population size is positively (resp. negatively) autocorrelated. The effective size is equal to the harmonic mean if and only if the fluctuation of population size is independent from generation to generation. The conditions on the parameters of the models under which the effective size is asymptotically equal to the harmonic mean or the arithmetic mean are obtained.
研究了种群规模的随机波动对种群有效规模的影响。为此,我们建立了三种具有种群规模涨落的模型(Wright-Fisher模型、扩散模型和聚结模型),并研究了它们的性质。文献中说,当种群大小不恒定时,有效大小等于波动种群大小的调和平均。J. H.然而,吉莱斯皮(加州大学戴维斯分校)发现,当种群规模随机波动时,有效规模不等于调和平均数。在种群大小随机波动的情况下,重要的是要知道有效大小与调和平均值和算术平均值的关系以及有效大小等于调和平均值的条件。结果表明,对于扩散模型和聚结模型,有效尺寸大于调和平均值,但小于算术平均值。对于Wright-Fisher模型,有效尺寸较大(分别为如果种群大小的波动是正的,则其小于调和平均值(分别为自相关(autocorrelated)。当且仅当种群规模的波动代际独立时,有效规模等于调和平均值。得到了模型参数的有效尺寸渐近等于调和平均或算术平均的条件。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masaru Iizuka: "A neutral model with fluctuating population size and its effective size"Genetics. 161. 381-388 (2002)
Masaru Iizuka:“人口规模及其有效规模波动的中性模型”遗传学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaru Iizuka: "The effective size of fluctuating populations"Theoretical Population Biology. 59. 281-286 (2001)
Masaru Iizuka:“波动种群的有效规模”理论种群生物学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaru Iizuka: "A population genetic study on the transition from Jomon people to Yayoi people"Genes & Genetic Systems. 77. 287-300 (2002)
饭冢正:《绳文人向弥生人过渡的群体遗传学研究》基因
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaru Iizuka and Takahiro Nakahashi: "A population genetic study on the transition from Jomon people to Yayoi people"Genes & Genetic Systems. 77. 287-300 (2002)
Masaru Iizuka和Takahiro Nakahashi:“从绳文人到弥生人的转变的群体遗传学研究”基因
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masashi Yokota: "Genetic drift in a hatchery and the maintenance of genetic diversity in hatchery-wild systems"Fisheries Science. 69. 101-109 (2003)
横田雅史:“孵化场的遗传漂变和孵化场野生系统遗传多样性的维持”渔业科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IIZUKA Masaru其他文献
IIZUKA Masaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IIZUKA Masaru', 18)}}的其他基金
Study on stochastic models of population genetics by means of the theories of stochastic processes
利用随机过程理论研究群体遗传学的随机模型
- 批准号:
21540143 - 财政年份:2009
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic analysis on models of population genetics
群体遗传学模型的随机分析
- 批准号:
18540137 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic analysis on population genetics models with multiple factors of stochastic force
多因素随机力群体遗传模型的随机分析
- 批准号:
15540134 - 财政年份:2003
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on limit theorems related to stochastic models in pupulation genetics
幼虫遗传学随机模型相关极限定理的研究
- 批准号:
10640132 - 财政年份:1998
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Population Genetical Studies on Molecular Evolution and Polymorphism of DNA Sites Linked to Selected Sites
分子进化和与选定位点相关的 DNA 位点多态性的群体遗传学研究
- 批准号:
06640800 - 财政年份:1994
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Studies on the Synthesis of New Oligosaccharide by Bacillus subtilis Levansucrase and Biological activity of the Synthesized Sugar.
枯草芽孢杆菌左聚蔗糖酶合成新型低聚糖及合成糖生物活性的研究。
- 批准号:
61560105 - 财政年份:1986
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 0.96万 - 项目类别:
Research Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Seminar on Stochastic Processes 2023
会议:随机过程研讨会 2023
- 批准号:
2244835 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Stochastic processes on random graphs with clustering
具有聚类的随机图上的随机过程
- 批准号:
EP/W033585/1 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Research Grant
Random functions and stochastic processes on random graphs
随机图上的随机函数和随机过程
- 批准号:
2246575 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
- 批准号:
2246817 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Optimal Transport of Stochastic Processes in Mathematical Finance
数学金融中随机过程的最优传输
- 批准号:
2345556 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
Network Stochastic Processes and Time Series (NeST)
网络随机过程和时间序列 (NeST)
- 批准号:
EP/X002195/1 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Research Grant
Seminar on Stochastic Processes 2022
随机过程研讨会 2022
- 批准号:
2151258 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
- 批准号:
22H01128 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)