BALANCED PARTITIONS OF TWO SETS OF POINTS IN THE PLANE

平面上两组点的平衡划分

基本信息

项目摘要

Recently, the Ham-sandwich Theorem was generalized as follows : If|R|=ag and|B|=bg, then there exists a subdivision X_1∪X_2∪・・・∪X_g of the plane into g disjoint convex polygons such that every X_i contains exactly a red points and b blue points. This theorem was proved by A. Kano and M.Kano for a=1,2 and they proposed it as a conjecture, and then this conjecture was independently proved by three papers.We obtain the following three new results.(1)Suppose that $R$ is a disjoint union of R_1 and R_2. Let|R_1|=g_1 and|R_2|=g_2. If|B|=(m-1)g_1+ mg_2, then we can subdivide the plane into g_1+g_2 disjoint convex polygons X_1∪・・・X_{g_1}∪Y_1∪・・・∪Y_{g_2} so that every X_i contains exactly one red point of R_1 and m-1 blue points, and every Y_j contains exactly one red point of R_2 and m blue points.(2)Let a≧1, g≧0 and h≧0 be integers such that g+h≧1. If|R|=ag+(a+1)h and|B|=(a+1)g+ah, then there exists a subdivision X_1∪・・・∪X_g∪Y_1∪・・・∪ Y_h of the plane into g+h disjoint convex polygons such that every X_i contains exactly a red points and a+1 blue points and every Y_j contains exactly a+1 red points and a blue points.(3)If|R|=a(g_1+g_2)+(a+1)g_3 and|B|=bg_1+(b+1)(g_2+g_3), then there exists a subdivision X_1∪・・・∪X_{g_1}∪Y_1∪・・・∪ Y_{g_2}∪Z_{1}∪・・・∪Z_{g_3} of the plane into g_1+g_2+g_3 disjoint convex polygons such that every X_i contains exactly a red points and b blue points, every Y_i, if any, contains exactly a red points and b+1 blue points, and every Z_i, if any, contains exactly a+1 red points and b+1 blue pointsWe also study some problems on discrete geometry and graph theory related to the above problems.
最近,Ham-sandwich定理被推广如下:如果|R| =ag和|B| =bg,则存在平面的一个细分X_1 <$X_2 <$··<$X_g为g个不相交的凸多边形,使得每个X_i恰好包含a个红点和B个蓝点。这个定理是由A. Kano和M.Kano对a= 1,2提出了一个猜想,然后这个猜想被三篇论文独立地证明了,我们得到了以下三个新结果。(1)设$R$是R_1和R_2的不交并。让|R_1| =g_1,|R_2| =g_2。如果|B| =(m-1)g_1+ mg_2,则可将平面细分为g_1+g_2个不相交的凸多边形X_1 <$···X_{g_1}<$Y_1 <$··<$Y_{g_2},使得每个X_i恰好包含R_1中的一个红点和m-1个蓝点,每个Y_j恰好包含R_2中的一个红点和m个蓝点。(2)设a ≥ 1,g ≥ 0和h ≥ 0为整数,使得g+h ≥ 1。如果|R| =ag+(a+1)h和|B| =(a+1)g+ah,则存在平面的一个剖分X_1 <$··<$X_g <$Y_1 <$··<$Y_h为g+h个不相交凸多边形,使得每个X_i恰好包含一个红点和一个+1个蓝点,每个Y_j恰好包含一个+1个红点和一个蓝点。(3)If|=a(g_1+g_2)+(a+1)g_3且|B| =bg_1+(B+1)(g_2+g_3),则存在平面的一个剖分X_1 <$··<$X_{g_1}<$Y_1 $>··<$Y_{g_2}<$Z_{1}<$··<$Z_{g_3}为g_1+g_2+g_3个不相交凸多边形,使得每个X_i恰好包含a个红点和B个蓝点,每个Y_i(如果有的话)恰好包含a个红点和B+1个蓝点,并且每个Z_i,|如果有的话,恰好包含a+1个红点和B+1个蓝点.本文还研究了与上述问题有关的离散几何和图论中的一些问题. if any, contains exactly a+1 red points and b+1 blue pointsWe also study some problems on discrete geometry and graph theory related to the above problems.

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A balanced interval of two sets of points on a line
一条直线上两组点的平衡间隔
Path Coverings of Two Sets of Points in the Plane
平面上两组点的路径覆盖
Semi-balanced partition of two sets of points and embedding of rooted forests,
两组点的半平衡划分和有根森林的嵌入,
Partitioning multipartite complete graphs by monochromatic trees,
通过单色树划分多部分完整图,
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kaneko;M.Kano;K.Suzuki
  • 通讯作者:
    K.Suzuki
Packing paths of lenghth at least two
包装路径长度至少为 2
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Kano;G.Katona;Z.Kiraly
  • 通讯作者:
    Z.Kiraly
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANO Mikio其他文献

KANO Mikio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANO Mikio', 18)}}的其他基金

Colored visual cryptography schemes and card games
彩色视觉密码方案和纸牌游戏
  • 批准号:
    22500003
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discrete and computational geometry on the plane lattice
平面晶格上的离散和计算几何
  • 批准号:
    19500004
  • 财政年份:
    2007
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DISCRETE GEOMEMTRY IN THE PLANE WITH GRAPHS
平面上的离散几何图形
  • 批准号:
    12640102
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
INFORMATION MATHEMATICS
信息数学
  • 批准号:
    07640278
  • 财政年份:
    1995
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GENERAL RESEARCH OF GRAPH THEORY
图论的一般研究
  • 批准号:
    07304016
  • 财政年份:
    1995
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了