GENERAL RESEARCH OF GRAPH THEORY
图论的一般研究
基本信息
- 批准号:07304016
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied not only graph theory but also its applications and related branches of mathematics. For example, we researched the following problems and obtained the following results.(1) Problems on (1, f) -odd subgraphs, which are natural generalizaion of matchings of graphs ; (2) Problem on straight-line embedding of graphs onto a given set of points in the plane ; (3) Problem of determining the minimum crossing number when we embed a graph on a book in three pages ; (4) Sufficient conditions for a graph to have a long cycle ; (5) Counting the number of 4-cycles in a directed graph without 3-cycles ; (6) We prove that for an integer k>=3, every graph with minimum degree at least 2k and with order at least g (k) contains vertex disjoint k cycles of the same length ; (7) We obtain a sufficient condition for a triangulation of Klein bottle to have Hamilton cycle, and study the equivalence of triangulations of Klein bottle under diagonal tranformations ; (8) A sufficient degree condition for a graph to have a cycle possessing a certain given property ; (9) The bandwidth of a graph plays an important role in matrix theory. We determine the upper bound of the bandwidths of trees.We also studied algebraic graph theory, combinatorics, discrete geometry, algorithm theory, theory and algorithm for digital images, and mathematical theory of machine discovery. For example, we researched spin models, and detemine the primitive symmetric association schemes with m_1=3 ; and gave an effective algorithm for detecting every line component contained in a digital image by making use of thoretical studies.
我们不仅学习了图论,还学习了图论的应用和相关的数学分支。例如,我们研究了以下问题,得到了以下结果。(1)关于(1,f) -奇子图的问题,这是图的匹配的自然推广;(2)平面上给定点集上图的直线嵌入问题;(3)在三页书中嵌入图时,确定最小交叉数的问题;(4)图具有长周期的充分条件;(5)计算没有3环的有向图中4环的个数;(6)证明了对于整数k>=3,每一个最小度至少为2k且阶至少为g (k)的图都包含相同长度的顶点不相交的k个环;(7)得到了Klein瓶三角剖分具有Hamilton循环的充分条件,并研究了Klein瓶三角剖分在对角变换下的等价性;(8)图具有具有某种给定性质的环的充分次条件;(9)图的带宽在矩阵理论中占有重要的地位。我们确定树的带宽的上界。我们还学习了代数图论、组合学、离散几何、算法理论、数字图像的理论与算法、机器发现的数学理论。例如,我们研究了自旋模型,确定了m_1=3的原始对称关联方案;并在理论研究的基础上,提出了一种有效的检测数字图像中包含的每条线分量的算法。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Ando A.Kaneko: "A remark on the connectivity of the component of a 3-connected graph" Discrete Mathematics. 151. 39-47 (1996)
K.Ando A.Kaneko:“关于 3 连通图分量的连通性的评论”离散数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Enomoto: "Graph decompositions without isolated vertices" Journal of Combinatorial Theory (series B). 63. 111-124 (1995)
H.Enomoto:“没有孤立顶点的图分解”组合理论杂志(B 系列)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Eiichi Bannai 他1名: "Generalized generalized spin models(four-weight spin model)" Pacific Journal of Mathematics. 170. 1-16 (1995)
Eiichi Bannai 等人:“广义广义自旋模型(四权重自旋模型)”太平洋数学杂志 170. 1-16 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Maehara: "Embedding a polytope in a lattice" Piscrete Computational Geometry22GD04:13. 585-592 (1995)
H. Maehara:“在晶格中嵌入多面体”Piscrete 计算几何22GD04:13。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Egawa and M.Kano: ""Sufficient conditions for graphs to have (g, h) -factors"" Discrete Mathematics. Vol.151. 87-90 (1996)
Y.Ekawa 和 M.Kano:“图具有 (g, h) 因子的充分条件”离散数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANO Mikio其他文献
KANO Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANO Mikio', 18)}}的其他基金
Colored visual cryptography schemes and card games
彩色视觉密码方案和纸牌游戏
- 批准号:
22500003 - 财政年份:2010
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete and computational geometry on the plane lattice
平面晶格上的离散和计算几何
- 批准号:
19500004 - 财政年份:2007
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BALANCED PARTITIONS OF TWO SETS OF POINTS IN THE PLANE
平面上两组点的平衡划分
- 批准号:
15540137 - 财政年份:2003
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DISCRETE GEOMEMTRY IN THE PLANE WITH GRAPHS
平面上的离散几何图形
- 批准号:
12640102 - 财政年份:2000
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
INFORMATION MATHEMATICS
信息数学
- 批准号:
07640278 - 财政年份:1995
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Investigations in Algebraic Graph Theory (Babai's Theorem)
代数图论研究(巴拜定理)
- 批准号:
573691-2022 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
University Undergraduate Student Research Awards
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Algebraic graph theory and quantum walks
代数图论和量子行走
- 批准号:
RGPIN-2021-03609 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Algebraic graph theory and quantum walks
代数图论和量子行走
- 批准号:
RGPIN-2021-03609 - 财政年份:2021
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2021
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2020
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Analyzing the Boson Sampling problem using algebraic graph theory
使用代数图论分析玻色子采样问题
- 批准号:
551635-2020 - 财政年份:2020
- 资助金额:
$ 3.46万 - 项目类别:
University Undergraduate Student Research Awards
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2019
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual
Determining the ground state of hard-core bosons via algebraic graph theory
通过代数图论确定核心玻色子的基态
- 批准号:
548789-2019 - 财政年份:2019
- 资助金额:
$ 3.46万 - 项目类别:
University Undergraduate Student Research Awards
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Discovery Grants Program - Individual