INFORMATION MATHEMATICS
信息数学
基本信息
- 批准号:07640278
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied graph theory including genetic algorithms and mathematical logic.For example, we searched (1, f) -odd subgraphs, which are natural generalization of matchings of graphs, and showed that these subgraphs have similar properties as matchings. We also studied connected factors and so on. Furthermore, we considered a problem of straight-line embedding of a graph onto a given set of points in the plane, and obtained some new results. Note that this area was developed in the 1990's, and there are a lot of problems.Some students of our laboratory wrote programs of finding a nearly optimal solutions to some discrete problems by making use of genetic algorithms, and by these test, we can say that genetic algorithms are useful for these problems. However it seems still to be very difficult to analyze theoretically genetic algorithm.The results in mathematical logic are the following. If we take Kripke sheaves as our basic Kripke-type semantics, we can regard the truth-value functor as a presheaf whose codomain is a category of Heyting algebras. This point of view enables us to have a good insight into the structures our subjects. We tried to investigate semantical structures. At first, we introduced categorical concepts and structural properties, and considered correspondences between the truth-value functors and the usual ones. Next, we tried to recognize category-theoretic natural transformations and functors from the stand point of Kripke-sheaf semantics with truth-value functor, and had some fundamental results. *From these results, we have that category-theoretic natural transformations almost correspond to semantical concept called p-morphisms. This observation provides us some natural results. By making use of these results, we studied modal logics, non-classical predicate logics, mainly intermediate predicate logics.
我们学习了图论,包括遗传算法和数理逻辑。例如,我们搜索了(1,f) -奇数子图,这是图的匹配的自然泛化,并证明了这些子图具有与匹配相似的性质。我们还研究了关联因素等。在此基础上,研究了平面上给定点的直线嵌入问题,得到了一些新的结果。请注意,这个地区是在20世纪90年代开发的,存在很多问题。我们实验室的一些学生写了一些程序,利用遗传算法来寻找一些离散问题的近最优解,通过这些测试,我们可以说遗传算法对这些问题很有用。然而,对遗传算法进行理论分析似乎仍然非常困难。数学逻辑的结果如下。如果我们把Kripke束作为我们的基本Kripke型语义,我们可以把真值函子看作一个上域是Heyting代数范畴的预束。这种观点使我们能够很好地洞察我们主题的结构。我们试图研究语义结构。首先,我们引入了范畴概念和结构性质,并考虑了真值函子与一般函子之间的对应关系。其次,我们尝试从Kripke-sheaf语义的角度用真值函子来识别范畴论的自然变换和函子,并得到了一些基本的结果。从这些结果中,我们得到范畴论的自然变换几乎对应于称为p-态射的语义概念。这一观察为我们提供了一些自然的结果。利用这些结果,我们研究了模态逻辑、非经典谓词逻辑,主要是中间谓词逻辑。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Egawa and M.Kano: ""Sufficient conditions for graphs to have (g, h) -factors"" Discrete Mathematics. Vol.151. 87-90 (1996)
Y.Ekawa 和 M.Kano:“图具有 (g, h) 因子的充分条件”离散数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.-Y.Suzuki: ""A remark on the delta operation and the Kripke sheaf semantics in super-intui-tion-istic predicate logics"" Bulletin of the Section of Logic. Vol.25. 21-28 (1996)
N.-Y.Suzuki:“关于超直觉谓词逻辑中的 Delta 运算和 Kripke 层语义的评论”,逻辑部分公告。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Egawa M.Kano: "Star partitions of graphs" Journal of Graph Theory. to appear
Y.Ekawa M.Kano:“图的星形分区”图论杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Enomoto and M.Kano: ""Disjoint odd integer subsets having a constant even sum"" Discrete Mathematics. Vol.137. 189-193 (1995)
H.Enomoto 和 M.Kano:“具有恒定偶数和的不相交奇整数子集”离散数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.-Y.Suzuki: ""Constructing a continuum of predicate extensions of each intermediate propositional logic, "" Studia Logica. Vol.54. 173-198 (1995)
N.-Y.Suzuki:“构建每个中间命题逻辑的谓词扩展的连续体”,Studia Logica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANO Mikio其他文献
KANO Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANO Mikio', 18)}}的其他基金
Colored visual cryptography schemes and card games
彩色视觉密码方案和纸牌游戏
- 批准号:
22500003 - 财政年份:2010
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete and computational geometry on the plane lattice
平面晶格上的离散和计算几何
- 批准号:
19500004 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BALANCED PARTITIONS OF TWO SETS OF POINTS IN THE PLANE
平面上两组点的平衡划分
- 批准号:
15540137 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DISCRETE GEOMEMTRY IN THE PLANE WITH GRAPHS
平面上的离散几何图形
- 批准号:
12640102 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GENERAL RESEARCH OF GRAPH THEORY
图论的一般研究
- 批准号:
07304016 - 财政年份:1995
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
2414907 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Construction of Mathematical Logic System to Verify Quantum Communication Networks and Its Quantum Computational Implications
验证量子通信网络的数学逻辑系统的构建及其量子计算意义
- 批准号:
22KJ1483 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
- 批准号:
2212620 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
- 批准号:
2201394 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Reconsideration of the applications of the mathematical logic in "French Thought".
数理逻辑在《法国思想》中应用的再思考
- 批准号:
22K00103 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Fostering Virtual Learning of Data Science Foundations with Mathematical Logic for Rural High School Students
协作研究:促进农村高中生数据科学基础与数学逻辑的虚拟学习
- 批准号:
2201393 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
- 批准号:
1947015 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual