Finite Projective Planes and Orthogonal Arrays

有限射影平面和正交阵列

基本信息

项目摘要

We got the following four results.(1)It was proved that there is no projective plane of order 12 admitting a collineation group of order 16 by showing the nonexistence of some orthogonal array OA (72,12,6,2). We used a computer for our research.(2)It was proved that there is only one symmetric transversal design STD_4[12;3] up to isomorphism. We also showed that the order of the full automorphism group of STD_4[12;3] is 2^5・3^3 and Aut STD_4[12;3] has a regular subgroup as a permutation group on the point set. We used a computer for our research.(3)We constructed a symmetric transversal sesign STD_7[21;3] admitting an automorphism group of order 7 which acts semiregularly on the set of the point groups and on the set of block groups.(4)Let S be a blocking semioval in arbitrary projective plane Pi of order 9 which meets some line in 8 points. According to Dover in [2], 20leqvert Svertleq 24. In [7] one of the authors showed that if Pi is desarguesian, then 22leqvert Svertleq 24. In this note all blocking semiovals with this property in all non-desarguesian projective plane of order 9 are completely determined. In any non-desarguesian plane Pi it is shown that 21leqvert Svertleq 24 and for each iin{21,22,23,24} there exist blocking semiovals of size I which meet some line in 8 points. Therefore, the Dover's bound is not sharp.
我们得到了以下四个结果。(1)通过证明正交阵列OA(72,12,6,2)的不存在性,证明了12阶射影平面不存在16阶共线群。我们用电脑做研究。(2)证明了只有一种对称横向设计STD_4[12];[3]直到同构。我们还证明了STD_4的全自同构群的序[12];3]是2^5·3^3和Aut STD_4[12;3]在点集上有正则子群作为置换群。我们用电脑做研究。(3)构造了一个对称横截面符号STD_7[21];3]承认一个7阶的自同构群,它半正则地作用于点群的集合和块群的集合。(4)设S为任意9阶投影平面Pi上与8点内某直线相交的块半函数。根据1999年的Dover, 2014年的leqvert Svertleq 24。在1986年,一位作者证明了如果Pi是无论证的,那么22leqvert Svertleq 24。本文给出了在所有9阶非灭参子投影平面上所有具有此性质的块半椭圆的完全确定。在任意非非论证平面Pi上,证明了21leqvert Svertleq 24和对于每一个iin{21,22,23,24}存在大小为I的阻塞半椭圆,它们与8个点上的某条直线相交。因此,多佛河的边界并不锐利。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The classification of symmetric transversal designs STD4[12;3]
对称横向设计的分类STD4[12;3]
The existence of a symmetric transversal design STD7[21;3]
对称横向设计 STD7[21;3] 的存在性
The nonexistence of projective planes of order 12 with a collineation group of order 16
具有 16 阶共线群的 12 阶射影平面不存在
STDk/3〔k;3〕's
STDk/3〔k;3〕’s
On blocking semiovals with an 8-secant in projective planes of order 9
关于在 9 阶射影平面上用 8 割线分块半椭圆
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUETAKE Chihiro其他文献

SUETAKE Chihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUETAKE Chihiro', 18)}}的其他基金

Finite projective planes and symmetric divisible designs
有限射影平面和对称可分设计
  • 批准号:
    21540139
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite projective planes, GL-semiregular STD, and LO-semiregular STD
有限射影平面、GL-半正则 STD 和 LO-半正则 STD
  • 批准号:
    18540132
  • 财政年份:
    2006
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

LEAPS MPS: Surface subgroups of outer automorphism group of the free group and dynamics on the boundary
LEAPS MPS:自由群外自同构群的表面子群和边界动力学
  • 批准号:
    2137611
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
  • 批准号:
    402300-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Random groups and the automorphism group of F2
F2 的随机群和自同构群
  • 批准号:
    498282-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Structural analysis of the automorphism group of a polynomial ring and its application
多项式环自同构群的结构分析及其应用
  • 批准号:
    15K04826
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
  • 批准号:
    402300-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
  • 批准号:
    402300-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
  • 批准号:
    402300-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry and dynamics of the outer automorphism group of a free group
自由群外自同构群的几何与动力学
  • 批准号:
    402300-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of the outer automorphism group of a free group
自由群外自同构群的几何
  • 批准号:
    1006248
  • 财政年份:
    2010
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Automorphism group of a smooth G-manifold and its applications.
光滑G流形的自同构群及其应用。
  • 批准号:
    21540074
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了