Asymptotic behavior of solutions for some diffusive equations and its applications

某些扩散方程解的渐近行为及其应用

基本信息

项目摘要

We studied the location of the blow-up set for the solutions for a semilinear heat equation with large diffusion, under the homogeneous Neumann boundary condition, in a bounded smooth domain of the Euclidean space. This was a joint work with Professors Noriko Mizoguchi and Hiroki Yagisita. We proved that, if the diffusive coefficient is sufficiently large, for almost all initial data, the solution blows-up in a finite time only near the maximum points of the projection of the initial data onto the second Neumann eigenspace. This is the first result that explains the relation between the eigenfunctions and the location of the blow-up set.On the other hand, we studied the movement of the maximum points (hot spots) of the solutions of the heat equations. In particular, we considered the solution for the Cauchy-Neumann problem and the Cauchy-Dirichlet problem to the heat equation in the exterior domain of a ball. This exterior domain is very simple, but it is difficult to study the movement of hot spots. By using harmonic functions, we obtained some good asymptotic behavior of the hot spots as the time tends to infinity. After that, we studied the decay rate of derivatives of the solution and the movement of hot spots for the solution of the heat equation, with Professor Yoshitsugu Kabeya. By this study, we can understand the mechanism how to decide the decay rate of the derivatives of the solutions and the movement of hot spots.
在齐次Neumann边界条件下,研究了具有大扩散项的半线性热方程解在欧氏空间中有界光滑区域上爆破集的位置.这是与沟口纪子教授和八木下博树教授的联合工作。我们证明了,如果扩散系数足够大,对于几乎所有的初始数据,只有在第二Neumann特征空间上的初始数据的投影的极大值点附近的解在有限时间内爆破。这是第一个解释本征函数与爆破集位置之间关系的结果。另一方面,我们研究了热方程解的极大值点(热点)的移动。特别地,我们考虑了球外区域上热方程的Cauchy-Neumann问题和Cauchy-Dirichlet问题的解。这一外部域非常简单,但研究热点的运动是困难的。利用调和函数,我们得到了热点在时间趋于无穷大时的一些好的渐近性质。之后,我们与Kabeya Yoshitsugu教授一起研究了热方程解的导数衰减率和热点的移动。通过这一研究,我们可以了解决定解的导数衰减速率和热点移动的机理。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
石毛和弘, 溝口紀子: "Blow-up behavior for semilinear heat equations with boundary conditions"Differential and Integral Equations. 16. 663-690 (2003)
Kazuhiro Ishige、Noriko Mizoguchi:“具有边界条件的半线性热方程的爆炸行为”微分方程和积分方程 16. 663-690 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Blow-up problems for a semilinear heat equation with large diffusion
  • DOI:
    10.1016/j.jde.2004.10.021
  • 发表时间:
    2005-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kazuhiro Ishige;Hiroki Yagisita
  • 通讯作者:
    Kazuhiro Ishige;Hiroki Yagisita
Movement of hot spots on the exterior domain of a ball under the Neumann boundary condition,
诺依曼边界条件下球外部域上热点的运动,
Movement of hot spots on the exterior domain of a ball under the Neumann boundary conditions
诺伊曼边界条件下球外域热点的运动
Movement of hot spots on the exterior domain of a ball
球外部区域热点的运动
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ichinose;H.Tamura;A.Kameyama;Shuichi Jimbo;Kazuhiro Ishige
  • 通讯作者:
    Kazuhiro Ishige
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIGE Kazuhiro其他文献

ウィズ災害の視点に立った防災教育
灾害视角下的防灾教育
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FUJISHIMA Yohei;ISHIGE Kazuhiro;矢守克也
  • 通讯作者:
    矢守克也
Initial traces and solvability of Cauchy problem to a semilinear parabolic system
半线性抛物型系统柯西问题的初迹及可解性
サウジアラビア紅海沿岸ハウラー遺跡の考古学調査(2019)―中世の港町の構造を探る―
沙特阿拉伯红海沿岸豪拉遗址考古调查(2019)——探索中世纪港口城镇的结构——
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FUJISHIMA Yohei;ISHIGE Kazuhiro;長谷川奏・徳永里砂・西本真一・惠多谷雅弘・藤井純夫
  • 通讯作者:
    長谷川奏・徳永里砂・西本真一・惠多谷雅弘・藤井純夫

ISHIGE Kazuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIGE Kazuhiro', 18)}}的其他基金

Qualitative properties for the Laplace equation with a dynamical boundary condition
具有动态边界条件的拉普拉斯方程的定性属性
  • 批准号:
    23654060
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Shape of the solutions and asymptotic analysis for the diffusive equations
扩散方程解的形状和渐近分析
  • 批准号:
    19340036
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure of nonnegative sloutions of diffusive equetious and its applications
扩散方程的非负表述结构及其应用
  • 批准号:
    12640206
  • 财政年份:
    2000
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Blow-up problem for a nonlinear diffusion equation and its diffusion coefficient
非线性扩散方程及其扩散系数的爆炸问题
  • 批准号:
    24840027
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
  • 批准号:
    23740128
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了