Compactification of M Theory and Manifolds with G2 Holonomy

M 理论和流形的 G2 Holonomy 紧化

基本信息

  • 批准号:
    15540253
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

In paper 2 we have applied the method of geometrical transition and computed the partition function of topological string theory on various non-compact Calabi-Yau manifolds using the link invariants of Chern-Simons theory. We have shown that the results of computation agree exactly with the formula proposed by Nekrasov for the N=2 supersymmetric gauge theory. And thus they establish the relation between topological string and N=2 SUSY gauge theory.In paper 3 we have used the representation theory of N=2 supersonformal algebra and the method of modular bootstrap and derived the boundary states of N=2 Liouville theory. N=2 Liouville theory is known to be T-dual to the coset SL(2;R)/U(1) model and our results on boundary states agree well with those known in SL(2;R)/U(1) theory.In paper 7 we have used the formula of Ashoke-Douglas for the distribution of flux vacua in type IIB string theory and evaluated the distribution function of flux vacua on the moduli space of Calabi-Yau manifolds. We have shown that the distribution function is peaked around the singular points in Calabi-Yau moduli space and have the universal behavior 1/(z^2 log z^2). Thus it diverges at the singular point z=0, however, it is still integrable around z=0 and there exist only a finite number of vacua around each Calabi-Yau singularity..In paper 8 we have studied the geometry of non-compact Calabi-Yau manifolds like ALE spaces and have proposed formula for their. elliptic genera based on the analysis of the representation theory of N=2,4 superconformal algebras. Our formula agrees with the one suggested from the decompactification of K3 surface by means of some non-trivial theta function identity.
在论文2中,我们采用了几何跃迁的方法,并使用Chern-Simons理论的链接不变式计算了拓扑字符串理论的分区函数。我们已经表明,计算的结果与Nekrasov对N = 2超对称仪理论提出的公式完全一致。因此,他们建立了拓扑字符串与n = 2 Susy仪理论之间的关系。在论文3中,我们使用了n = 2的代表理论,以及模块化自举的代数和模块化自举的方法,并得出了n = 2 liouville理论的边界状态。 N=2 Liouville theory is known to be T-dual to the coset SL(2;R)/U(1) model and our results on boundary states agree well with those known in SL(2;R)/U(1) theory.In paper 7 we have used the formula of Ashoke-Douglas for the distribution of flux vacua in type IIB string theory and evaluated the distribution function of flux vacua on the moduli space of Calabi-Yau manifolds.我们已经表明,分布函数在Calabi-yau模量空间中的单数点周围达到峰值,并具有通用行为1/(z^2 log z^2)。因此,它在奇数点z = 0处有分歧,但是,它仍然可以在z = 0左右进行集成,并且在每个calabi-yau奇异性周围仅存在有限数量的真空。.在论文8中,我们研究了非紧凑型calabi-yau歧管的几何形状,例如ALE空间,并提供了建议的公式。基于n = 2,4超符号代数的表示理论的分析的椭圆属。我们的公式与通过某些非平凡的theta函数身份对K3表面的分解所建议的公式一致。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological strings and Nekrasov's formulas
  • DOI:
    10.1088/1126-6708/2003/12/006
  • 发表时间:
    2003-10
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    T. Eguchi;H. Kanno
  • 通讯作者:
    T. Eguchi;H. Kanno
Modular Bootstrap of Boundary N=2 Liouville Theory
边界N=2刘维尔理论的模Bootstrap
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Eguchi;Y.Sugawara;T.Eguchi
  • 通讯作者:
    T.Eguchi
Modular Bootstrap for Boundary N=2 Liouville Theory
边界 N=2 刘维尔理论的模块化 Bootstrap
Tohru Eguchi, Yuji Sugawara: "Branches of N=1 Vacua and Argyres-Douglas Points"JHEP. 0305. 063 (2003)
Tohru Eguchi、Yuji Sukawara:“N=1 真空和阿盖尔-道格拉斯点的分支”JHEP。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Branches of N=1 Vacua and Argyres-Douglas Points
N=1 Vacua 和 Argyres-Douglas 点的分支
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

EGUCHI Tohru其他文献

EGUCHI Tohru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('EGUCHI Tohru', 18)}}的其他基金

Approach to Standard Model based on Superstring Compactifications
基于超弦紧化的标准模型方法
  • 批准号:
    16081206
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Supersymmetry and Unified Theory of Elementary Panticles
超对称性与基本粒子统一理论
  • 批准号:
    10209202
  • 财政年份:
    2002
  • 资助金额:
    $ 2.18万
  • 项目类别:
    特定領域研究
World-sheet instanton and string duality
世界表瞬子和弦对偶性
  • 批准号:
    10640253
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Superstring Duality and Brane Dynamics
超弦对偶性和膜动力学
  • 批准号:
    10209203
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
S-duality in Supersymmetric Gauge Theory and String Theory
超对称规范理论和弦理论中的 S 对偶性
  • 批准号:
    08640353
  • 财政年份:
    1996
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of Two-Dimensional Black Hole
二维黑洞理论
  • 批准号:
    05640331
  • 财政年份:
    1993
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Analysis of algebraic and geometrical structure in superstring theory
超弦理论中的代数和几何结构分析
  • 批准号:
    13135212
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了