How we see a symmetry in a regularized theory

我们如何看待正则化理论中的对称性

基本信息

  • 批准号:
    15540262
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

1. Symmetry and exact renormalisation groupA regularization introduced in the exact renormalization group often conflicts with symmetry of a theory. Earlier we have formulated the problem in the Batalin-Vilokovitsky's anti-field formalism and found that the master equation guarantees the presence of symmetry even in a regularized theory. One research during the project clarified how the flow equation respects a symmetry, which appears as a BRS symmetry in our formalism. The result was first obtained for a fermionic system with the chiral symmetry, and recently the similar result was produced for QED. We reported these results in international conferences.2. Supersymmetry on LatticeLattice gauge theory has been a powerful formulation for non-perturbative study. No convincing formulation of a supersymmetric theory on lattice has been known. Earlier, So, Itoh and others found a Grassmannian symmetry for the system of the staggered fermion coupled to link variables with a novel modification of coupling constants, namely the distribution of the coupling constants in the Ichimatsu-pattern. The presence of the symmetry may imply the emergence of supersymmtery in a continuum limit. In order to achieve that, we have to clarify the degrees of freedom both for the fermionic and bosonic part of the theory. Along this line of this thought, we have formulated the staggered fermion respecting the SO(2D) hidden symmetry. Based on that, So and3. Other subjectsWe also abtained some other results on the string field theory and lattice gauge theory. As for the former subject, our result is related to the large gauge symmetry of the SFT and its relation to various solutions that is believed to describe the tachyon condensation. As for the latter, results are obtained on the analogue of Witten's global anomaly and properties of an overlap-type Dirac operator in a gravitational background.
1. 对称与精确重整化群精确重整化群中引入的正则化常常与理论的对称性相冲突。前面我们已经在Batalin-Vilokovitsky的反场形式主义中公式化了这个问题,并且发现主方程即使在正则化理论中也保证了对称性的存在。项目期间的一项研究阐明了流动方程如何尊重对称,这在我们的形式主义中表现为BRS对称。这一结果最初是在具有手性对称性的费米子系统中得到的,最近在QED中也得到了类似的结果。我们在国际会议上报告了这些结果。格点规范理论的超对称已成为非微扰研究的有力表述。目前还没有令人信服的关于晶格的超对称理论的表述。在此之前,So, Itoh等人发现了交错费米子耦合系统的格拉斯曼对称,该系统将变量与耦合常数的一种新的修改联系起来,即耦合常数在一松模式中的分布。对称性的存在可能意味着在连续体极限中出现超对称性。为了达到这个目的,我们必须澄清理论中费米子和玻色子部分的自由度。沿着这条思路,我们制定了尊重SO(2D)隐藏对称的交错费米子。在此基础上,So和3。其他课题在弦场理论和点阵规范理论方面也取得了一些成果。对于前一个主题,我们的结果与SFT的大规范对称性及其与被认为描述速子凝聚的各种解的关系有关。对于后者,给出了引力背景下Witten全球异常的模拟结果和重叠型狄拉克算子的性质。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genuine Symmetry of Staggered Fermion
交错费米子的真正对称性
Rotational symmetry and a light mode in two-dimensional staggered fermions
二维交错费米子中的旋转对称性和光模式
K.Itoh, M.Kato, H.Sawanaka, H.So, N.Ukita: "Fermionic Symmetry in Ichimatsu-Decomposed Lattice Models"Nuclear Physics B (Proc.Suppl.). 119. 903-905 (2003)
K.Itoh、M.Kato、H.Sawanaka、H.So、N.Ukita:“市松分解晶格模型中的费米子对称性”核物理 B(Proc.Suppl.)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Leibniz rule and exact supersymmetry on lattice: A Case of supersymmetrical quantum mechanics
莱布尼兹规则和晶格上的精确超对称性:超对称量子力学的一个案例
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitsuhiro Kato;Makoto Sakamoto;Hiroto So
  • 通讯作者:
    Hiroto So
Tree Expansion of the Wilson Effective Action and Reduction of the Polchinski Flow Equations
威尔逊有效作用的树展开和波尔钦斯基流方程的约简
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Ishikake;Y.Igarashi;U.Naoya
  • 通讯作者:
    U.Naoya
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITO Katsumi其他文献

ITO Katsumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
  • 批准号:
    EP/X026116/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
  • 批准号:
    EP/X014959/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
  • 批准号:
    23K12983
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Aspects of curved-space supersymmetry and of supersymmetric black holes.
弯曲空间超对称性和超对称黑洞的方面。
  • 批准号:
    2885396
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Search for supersymmetry in events with missing ET and b-jets with ATLAS
使用 ATLAS 搜索缺少 ET 和 b 喷流的事件中的超对称性
  • 批准号:
    2665416
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Mathematics and Supersymmetry
数学和超对称性
  • 批准号:
    563284-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    University Undergraduate Student Research Awards
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
  • 批准号:
    RGPIN-2017-06971
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Discovery Grants Program - Individual
Searching for Supersymmetry at ATLAS at the LHC
在 LHC 的 ATLAS 上寻找超对称性
  • 批准号:
    2606420
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Phenomenology of Electroweak Symmetry Breaking, Supersymmetry, and the Frontiers of the Standard Model
电弱对称破缺、超对称性和标准模型前沿的现象学
  • 批准号:
    2013340
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
  • 批准号:
    RGPIN-2017-06971
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了