Geometric structures and twisted supersymmetry

几何结构和扭曲超对称

基本信息

  • 批准号:
    EP/X014959/1
  • 负责人:
  • 金额:
    $ 40.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Since the era of Newton, there has been a close relationship between developments in mathematics and theoretical physics. One of the greatest challenges in the modern age is to formulate a unified theory combining the two pillars of our current understanding of the universe: the Standard Model of particle physics and Einstein's General Relativity. Despite their extraordinary successes, these two theories are fundamentally incompatible and it seems that, once again, a resolution of this physical problem will require great advances in mathematics.Superstring theory is a promising candidate for a unified theory, but it exists only in ten-dimensional spacetime. One way to explain the four-dimensional world that we observe via string theory is to view the extra six dimensions as a tiny compact geometric space (like the surface of a sphere, but with more dimensions) whose presence can only be directly detected by particles of such high energy that they are not created in current experiments. In this construction, the shape of this compact space determines the four-dimensional laws of physics we can see around us in experiments. Further, understanding these spaces is not only important for physical models in string theory - they are also the subject of deep questions in pure mathematics research.This project aims to develop new understanding of their geometric properties, via a new physical approach to the mathematics. In the simplest scenarios, the spaces which one requires turn out to be objects, called special holonomy manifolds, that have been studied by mathematicians for decades. Many researchers have focused on spaces in this class called Calabi-Yau manifolds, as they are physically promising and relatively easy to construct. However, more general solutions exist, with additional physical fields called fluxes, and these have physically desirable features. Recently, a new mathematical notion of geometry, "generalised geometry", has been developed which includes these fluxes naturally, and this provides an elegant description of the more general solutions. This is just one of many examples of physics leading to new mathematics and the mixing of these two disciplines has often led to astounding progress on both sides.An important observation, which linked string theory and geometry even more closely, was that on Calabi-Yau manifolds there exist simplified string theories, called topological string theories, whose physics are more tractable and directly encode interesting mathematical features of the geometries. In particular, they encode quantities which are invariant under smooth deformations of the geometry. These invariants are regarded as key mathematical properties of the spaces and are used, for example, to determine if constructed examples of such spaces are really different or not, which can be very hard to ascertain otherwise. Conversely, the invariants encode information about the physics of topological strings, which in turn can provide exact answers to calculations in the full string theory.However, all of this has only been understood in the cases of Calabi-Yau manifolds. There are signs that such theories exist in more general situations, and that generalised geometry is the natural way to approach their constructions. One scenario where this is particularly relevant is actually another type of special holonomy manifold: seven-dimensional spaces called G2 manifolds. These have become a particular focus of the geometry community, and even though they still have zero flux, generalised geometry has been seen to give an elegant "physical" approach to these spaces.This project aims to construct analogues of topological string theories in this wider context and to use these to discover new invariants, which will become key objects in both the mathematical and physical understanding of these spaces.
自牛顿时代以来,数学的发展与理论物理学的发展有着密切的关系。现代最大的挑战之一是制定一个统一的理论,结合我们目前对宇宙的理解的两个支柱:粒子物理学的标准模型和爱因斯坦的广义相对论。尽管这两个理论取得了非凡的成就,但它们从根本上是不相容的,而且似乎要解决这个物理问题,又需要数学上的巨大进步。超弦理论是一个有希望成为统一理论的候选者,但它只存在于10维时空中。解释我们通过弦理论观察到的四维世界的一种方法是把额外的六维看作一个微小的紧凑几何空间(像球体的表面,但有更多的维度),它的存在只能由能量如此之高的粒子直接检测到,它们不是在当前的实验中产生的。在这个构造中,这个紧凑空间的形状决定了我们在实验中可以看到的四维物理定律。此外,理解这些空间不仅对弦论中的物理模型很重要,它们也是纯数学研究中的深层次问题。本项目旨在通过一种新的数学物理方法,发展对它们的几何性质的新理解。在最简单的情况下,人们所需要的空间是被称为特殊完整流形的对象,数学家已经研究了几十年。许多研究人员都专注于这类称为卡-丘流形的空间,因为它们在物理上很有前途,而且相对容易构造。然而,存在更一般的解决方案,具有称为通量的额外物理场,并且这些具有物理上期望的特征。最近,一个新的数学概念的几何,“广义几何”,已经开发,其中包括这些通量自然,这提供了一个优雅的描述更一般的解决方案。这只是物理学导致新数学的众多例子之一,而这两个学科的混合往往导致双方都取得惊人的进展。一个重要的观察,将弦理论和几何学联系得更紧密,是在卡-丘流形上存在简化的弦理论,称为拓扑弦理论,其物理学更易于处理,并直接编码有趣的几何数学特征。特别是,他们编码的数量是不变的几何形状的平滑变形。这些不变量被认为是空间的关键数学性质,例如,用于确定这种空间的构造示例是否真的不同,否则很难确定。相反,不变量编码了拓扑弦的物理信息,而拓扑弦又可以为完整弦理论的计算提供精确的答案,然而,所有这些都只在卡-丘流形的情况下才被理解。有迹象表明,这样的理论存在于更一般的情况下,广义几何是自然的方式来接近他们的建设。与此特别相关的一个场景实际上是另一种特殊的完整流形:称为G2流形的七维空间。这些已经成为几何社区的一个特别的焦点,即使他们仍然有零通量,广义几何已经被认为是给这些空间一个优雅的“物理”方法。这个项目的目的是在这个更广泛的背景下构建类似的拓扑弦理论,并使用这些发现新的不变量,这将成为关键对象在数学和物理理解这些空间。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A heterotic Kodaira-Spencer theory at one-loop
  • DOI:
    10.1007/jhep10(2023)130
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    A. Ashmore;Javier Jos'e Murgas Ibarra;D. McNutt;C. Strickland‐Constable;Eirik Eik Svanes;David Tennyson;Sander Winje
  • 通讯作者:
    A. Ashmore;Javier Jos'e Murgas Ibarra;D. McNutt;C. Strickland‐Constable;Eirik Eik Svanes;David Tennyson;Sander Winje
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Strickland-Constable其他文献

Charles Strickland-Constable的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
  • 批准号:
    60672101
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
新型嘧啶并三环化合物的合成研究
  • 批准号:
    20572032
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Studentship
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
  • 批准号:
    2340414
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Standard Grant
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
  • 批准号:
    2323276
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Standard Grant
Development of an entirely Lagrangian hydro-elastoviscoplastic FSI solver for design of resilient ocean/coastal structures
开发完全拉格朗日水弹粘塑性 FSI 求解器,用于弹性海洋/沿海结构的设计
  • 批准号:
    24K07680
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
  • 批准号:
    DP240101708
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了