Investigation of large-scale spacetime structures in higher-dimensional cosmology

高维宇宙学中大尺度时空结构的研究

基本信息

  • 批准号:
    15540267
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The major research achievements obtained by my investigations from 2003 to 2005 are summarized as follows :A)Perturbation theory of higher-dimensional static black holes : For the Einstein-Maxwell system with cosmological constant in arbitrary dimensions, we showed in terms of the gauge-invariant formulation that perturbation equations for a generalized static black holes can be reduced to decoupled 2^<nd>-order ordinary differential equations of the Schrodinger type (master equations) and we derived the explicit expressions for the effective potentials and source terms for the first time in the world. Further, with the help of this formulation, we proved that the Schwarzschild black hole of arbitrary dimensions and charged black holes in four and five dimensions with non-negative cosmological constant are perturbatively stable.B)Perturbative uniqueness of higher-dimensional black holes : We proved the perturbative uniqueness of asymptotically de Sitter regular black holes in four dime … More nsions and asymptotically flat or anti-de Sitter regular black holes in arbitrary dimensions.C)Stability of flux compactification : We have shown generally that warped supersymmetric stationary solutions obtained by flux compactification in IIB supergravity are always unstable irrespective of detailed structures of the internal space and flux, and that the instability arises additively in the size modulus.D)Four-dimensional effective theory of warped compactification : For flux compactification of IIB supergravity and heterotic M-theory, we derived four-dimensional effective theories for the size modulus of the internal space and the four-dimensional metric taking account of warping for the first time in the world. Further, we pointed out that this effective theory allows a wider class of solutions than the original higher-dimensional theories.E)Exact light-like solutions in M-theory : We obtained a general class of light-like solutions with 16 supersymmetries in eleven-dimensional supergravity. These solutions in general contain more than one arbitrary functions of a single variable and can be used to study dynamics of compactifications. Less
本文从2003年到2005年的研究工作中,主要取得了以下成果:(1)高维静态黑洞的微扰理论:对于任意维宇宙常数的Einstein-Maxwell系统,我们证明了广义静态黑洞的微扰方程可以通过规范不变形式化为解耦的2^<nd>阶Schrodinger型常微分方程(主方程),并在国际上首次导出了有效势和源项的显式表达式。进一步,我们证明了任意维的Schwarzschild黑洞以及四维和五维的具有非负宇宙学常数的带电黑洞都是微扰稳定的.B)高维黑洞的微扰唯一性:我们证明了四维渐近de Sitter正则黑洞的微扰唯一性 ...更多信息 nsions和渐近平坦或anti-de Sitter规则黑洞在任意维. C)通量紧致化的稳定性:我们已经一般地证明了在IIB超引力中通过通量紧致化得到的翘曲超对称定态解总是不稳定的,与内部空间和通量的详细结构无关,并且不稳定性在尺寸模中增加.D)四维有效翘曲紧致化理论:对于IIB超引力的通量紧致化和杂化M理论,我们在国际上首次导出了考虑翘曲的四维有效内部空间尺寸模和四维度规理论. E)M-理论中的精确类光解:我们在11维超引力中得到了具有16个超对称的一般类光解。这些解一般包含多个单变量的任意函数,可以用来研究紧化的动力学。少

项目成果

期刊论文数量(47)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-dependent solutions with null Killing spinor in M-theory and superstrings
  • DOI:
    10.1016/j.physletb.2005.09.080
  • 发表时间:
    2005-09
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Takayuki Ishino;H. Kodama;N. Ohta
  • 通讯作者:
    Takayuki Ishino;H. Kodama;N. Ohta
Stability of Higher-Dimensional Schwarzschild Black Holes
  • DOI:
    10.1143/ptp.110.901
  • 发表时间:
    2003-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihiro Ishibashi;Hideo Kodama
  • 通讯作者:
    Akihiro Ishibashi;Hideo Kodama
Kodama H., Ishibashi A.: "Master equations for perturbations of generalized static black holes with charge in higher dimensions"Prog.Theor.Phys.. 111. 29-73 (2004)
Kodama H.、Ishibashi A.:“高维带电荷广义静态黑洞扰动的主方程”Prog.Theor.Phys.. 111. 29-73 (2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Moduli Instability in Warped Compactifications of the Type IIB Supergravity
IIB 型超重力翘曲致密化中的模量不稳定性
Gobal structure of the Zipoy-Voorhees-Weyl spacetime and the δ=2 Tomimatsu-Sato spacetime
Zipoy-Voorhees-Weyl 时空和 δ=2 Tomimatsu-Sato 时空的全球结构
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Kodama;W.Hikida
  • 通讯作者:
    W.Hikida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KODAMA Hideo其他文献

KODAMA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KODAMA Hideo', 18)}}的其他基金

The exploration of extradimensions in terms of a variety of cosmophysical phenomena caused by axionic moduli
根据轴子模量引起的各种宇宙物理现象探索超维度
  • 批准号:
    22244030
  • 财政年份:
    2010
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigation of the large scale structure and stability of supersymmetric solutions in higher-dimensional supergravities
高维超引力中超对称解的大尺度结构和稳定性研究
  • 批准号:
    18540265
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of the Cosmic Censorship Hypothesis in Terms of Classification of Terminal Singularities
从终端奇点的分类角度研究宇宙审查假说
  • 批准号:
    11640273
  • 财政年份:
    1999
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Theory of Totally Constrained Systems and its Application to Gravity Theories
全约束系统的量子理论及其在引力理论中的应用
  • 批准号:
    08640370
  • 财政年份:
    1996
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of observables and dynamics in 4-dimonsional canonical quantum grarit
4 维正则量子引力石中的可观测量结构和动力学
  • 批准号:
    05640340
  • 财政年份:
    1993
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Quantum Gravity by the Complex Canonical Theory and its Application to Cosmology
复杂正则理论的量子引力及其在宇宙学中的应用
  • 批准号:
    02640228
  • 财政年份:
    1990
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Formation of primordial black holes after inflation in modified gravity and supergravity
在修正重力和超重力条件下膨胀后形成原初黑洞
  • 批准号:
    22K03624
  • 财政年份:
    2022
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Duality Invariant Supergravity, String Geometry and Global Properties of T-Duality in arbitrary Dimension and Signature
任意维度和签名中的对偶不变超引力、弦几何和T-对偶的全局性质
  • 批准号:
    2751314
  • 财政年份:
    2022
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Studentship
Holography for rotating black holes and supergravity solutions
旋转黑洞的全息术和超重力解决方案
  • 批准号:
    RGPIN-2016-06797
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Discovery Grants Program - Individual
Research in String Theory, Supergravity and Cosmology
弦理论、超引力和宇宙学研究
  • 批准号:
    2013988
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Continuing Grant
New Techniques for Holography from Supergravity
超重力全息新技术
  • 批准号:
    2014163
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
Holography for rotating black holes and supergravity solutions
旋转黑洞的全息术和超重力解决方案
  • 批准号:
    RGPIN-2016-06797
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Discovery Grants Program - Individual
Black Holes, Quantum Physics and Holography
黑洞、量子物理和全息术
  • 批准号:
    20K14462
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometrical aspects of string theory and supergravity
弦理论和超引力的几何方面
  • 批准号:
    2271092
  • 财政年份:
    2019
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Studentship
understand the geometric structures of the moduli space of heterotic theories using supergravity,worldsheet sigma models and differential geometry
使用超引力、worldsheet sigma 模型和微分几何理解异质理论模空间的几何结构
  • 批准号:
    2283468
  • 财政年份:
    2019
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Studentship
Holography for rotating black holes and supergravity solutions
旋转黑洞的全息术和超重力解决方案
  • 批准号:
    RGPIN-2016-06797
  • 财政年份:
    2019
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了