Quantum Theory of Totally Constrained Systems and its Application to Gravity Theories

全约束系统的量子理论及其在引力理论中的应用

基本信息

  • 批准号:
    08640370
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1998
  • 项目状态:
    已结题

项目摘要

The main results obtained by the research from 1996 through 1998 are summarized as follows :1) Canonical structure of locally homogeneous systems : For a locally homogeneous system on a compact 3-dimensional space, a general algorithm to determine the canonical structure of the phase space consisting of all diffeomorphism classes of initial data sets was developed, and the moduli degrees of freedom were shown to be constants of motion. Further, with the help of the algorithm, the canonical structures of pure gravity systems of the Thurston type E3, Nil and Sol were completely classified to show that the canonical structure often becomes degenerate in the moduli sector.2) Quantum Bianchi model : On the basis of the result in I), the quantum dynamics of the type E3 systems with compact space was analyzed in terms of the new formalism (Web formalism) proposed by the head investigator and was compared with the treatment in terms of the conventional Wheeler-DeWitt equation. The most importa … More nt result is the discovery of the fact that the quantum dynamics in the Web formalism is described not by solutions to the Wheeler-DeWitt equation but rather by their extensions in the distribution sense in general.3) Perturbation of scalar fields on an expanding universe : the structure of the gauge-invariant perturbation theory was investigated in detail for the system consisting of scalar fields and gravity on a spatially homogeneous and isotropic expanding universe background. It was found that there is a general correspondence between the long-wavelength limit of gauge-invariant perturbations and the homogeneous perturbations of the homogeneous background solution. Further, with the help of this correspondence, the evolutions of superhorizon scale perturbations in the reheating stage of inflationary models were investigated analytically to establish the conservation law of the Bardeen parameter during this stage.4) Black hole thermodynamics : On the basis of the idea of entanglement, thermodynamics was constructed for a quantum scalar field on the flat spacetime and on black hole spacetimes. It was shown that the entanglement thermodynamics thus constructed for the black hole spacetimes has the same structure as that of the classical black hole thermodynamics. Less
1)局部齐次系统的标准结构:对于紧致三维空间上的局部齐次系统,给出了确定由初始数据集的所有微分同胚类组成的相空间的标准结构的一般算法,并且证明了其模自由度为运动常数。2)量子比安奇模型:在I)结果的基础上,用带头研究人员提出的新形式(Web形式)分析了紧致空间E3型纯引力系统的量子动力学,并与传统的Wheeler-DeWitt方程的处理方法进行了比较。最重要的…更多的结果是发现了这样一个事实:Web形式中的量子动力学不是用Wheeler-DeWitt方程的解来描述,而是用它们在分布意义上的推广来描述。3)扩展宇宙中标量场的微扰:详细研究了空间均匀和各向同性扩展宇宙背景上由标量场和引力组成的系统的规范不变微扰理论的结构。结果表明,规范不变微扰的长波极限与齐次背景解的齐次微扰之间存在着普遍的对应关系。在此基础上,对膨胀模型再热阶段超视界尺度微扰的演化进行了解析研究,建立了这一阶段的Bardeen参数守恒定律。4)黑洞热力学:基于纠缠的思想,建立了平坦时空和黑洞时空上量子标量场的热力学。结果表明,为黑洞时空构造的纠缠热力学与经典黑洞热力学具有相同的结构。较少

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kodama H.and Hamazaki T.: "Evolution of Cosmological Perturbarions on the Long Wave Length Limit" Phys.Rev.D57. 7177-7185 (1998)
Kodama H. 和 Hamazaki T.:“长波长极限上的宇宙扰动的演化”Phys.Rev.D57。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mukohyama S., Serin M. and Kodama H.: "Ther mo dynamics of entanslement in Schwarzschild Spacetime" Phys. Rev.D58. 064001 : 1-11 (1998)
Mukohyama S.、Serin M. 和 Kodama H.:“史瓦西时空中纠缠的热动力学”物理。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mukouyama S., Seriu M.and Kodama H.: "Can the entanglement entropy be the origin of black-hole en-tropy?" Phys.Rev.D55. 7666-7679 (1997)
Mukouyama S.、Seriu M.和 Kodama H.:“纠缠熵可以成为黑洞熵的起源吗?”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kodama H.: "Canonical Structure of Locally Honogeneous Systems on Compart Closed 3-Hanifolds of Tyre E^3, Nil and sol" Prog.Theor.Phys.99. 173-236 (1998)
Kodama H.:“轮胎 E^3、Nil 和 sol 的隔室封闭 3 通道上局部均匀系统的规范结构”Prog.Theor.Phys.99。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小玉 英雄: "相対性理論" 培風館, 309 (1997)
儿玉秀夫:《相对论》百风馆,309(1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KODAMA Hideo其他文献

KODAMA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KODAMA Hideo', 18)}}的其他基金

The exploration of extradimensions in terms of a variety of cosmophysical phenomena caused by axionic moduli
根据轴子模量引起的各种宇宙物理现象探索超维度
  • 批准号:
    22244030
  • 财政年份:
    2010
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigation of the large scale structure and stability of supersymmetric solutions in higher-dimensional supergravities
高维超引力中超对称解的大尺度结构和稳定性研究
  • 批准号:
    18540265
  • 财政年份:
    2006
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of large-scale spacetime structures in higher-dimensional cosmology
高维宇宙学中大尺度时空结构的研究
  • 批准号:
    15540267
  • 财政年份:
    2003
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of the Cosmic Censorship Hypothesis in Terms of Classification of Terminal Singularities
从终端奇点的分类角度研究宇宙审查假说
  • 批准号:
    11640273
  • 财政年份:
    1999
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of observables and dynamics in 4-dimonsional canonical quantum grarit
4 维正则量子引力石中的可观测量结构和动力学
  • 批准号:
    05640340
  • 财政年份:
    1993
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Quantum Gravity by the Complex Canonical Theory and its Application to Cosmology
复杂正则理论的量子引力及其在宇宙学中的应用
  • 批准号:
    02640228
  • 财政年份:
    1990
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Research Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
NX Micro COTS laser system for quantum gravity gradiometry
用于量子重力梯度测量的 NX Micro COTS 激光系统
  • 批准号:
    10073639
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Small Business Research Initiative
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
Liouville Quantum Gravity and Its Applications
刘维尔量子引力及其应用
  • 批准号:
    2245832
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Quantum gravity phenomenology based on S-matrix program
基于S矩阵程序的量子引力现象学
  • 批准号:
    22KF0253
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research in Particle Theory, Cosmology, and Quantum Gravity
粒子论、宇宙学和量子引力研究
  • 批准号:
    2310429
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Quantum gravity theory opened up by new physics that can be experimentally verified
量子引力理论由可通过实验验证的新物理学开辟
  • 批准号:
    23K13108
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical verification of the primordial universe based on theories of quantum gravity.
基于量子引力理论的原始宇宙理论验证。
  • 批准号:
    23K13100
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Gauge/gravity correspondence and quantum gravity for expanding universe
膨胀宇宙的规范/重力对应关系和量子引力
  • 批准号:
    23H01170
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了