Compactification of M theory and the origin of Higgs and matter fields
M 理论的紧化以及希格斯和物质场的起源
基本信息
- 批准号:15540287
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have achieved a few results on the subjects of this research project.1.We pursued the viewpoint that the Higgs field is obtained from a gauge field in higher dimensions by compactification. In this approach the group of this gauge theory has to be extended to SU (3)×SU (3)×U(1)(3-3-1 model) or higher in order for the standard model to be built in. We have studied a phenomenological consequence of the 3-3-1 model.2.Recently, in the context of superstring theory, supersymmetric (SUSY) field theories on superspace of which superspace coordinates are noncommutative (NC) have been proposed.We have succeeded in constructing SUSY CP^n nonlinear sigma model (NLSM) on NC superspace. We have further studied the question whether some of the "good properties" of the SUSY CP^n model in d=2 are preserved after extension to NC superspace. We have obtained results on the perturbative aspect, such as renormalizability of the model. We have also studied it's non-perturbative properties, instantons and integrability of the model.3.We have studied gauge theory/gravity correspondence and related problems, in particular the evaluation of the effective superpotential in 4D super Yang-Mills theory using the matrix model (due to Dijkgraaf-Vafa).To this end we have constructed supersymmetric eigenvalue model and studied it's equation of motion.We have proposed a relation between Nekrasov's partition function and the moduli space of D-branes.We have published 11 papers during the three years of this project term.
我们在本研究项目的主题上取得了一些成果。1.我们追求的观点是希格斯场是通过紧化从更高维度的规范场获得的。在这种方法中,这个规范理论的群必须扩展到SU(3)×SU(3)×U(1)(3-3-1模型)或更高,以便建立标准模型。我们研究了3-3-1模型的一个唯象推论。2.最近,在超弦理论的背景下,超空间坐标为非对易(NC)的超对称(SUSY)场论被提出,我们成功地构造了NC超空间上的SUSY CP^n非线性σ模型(NLSM)。我们进一步研究了d=2时的SUSY CP^n模型在推广到NC超空间后是否仍保持某些“好性质”的问题。我们得到了微扰方面的结果,如模型的重正化。研究了该模型的非微扰性质、瞬子和可积性。3.研究了规范理论/引力对应及相关问题。特别是用矩阵模型计算四维超杨-米尔斯理论中的有效超势(由于Dijkgraaf-Vafa)为此,我们构造了超对称本征值模型,研究了它的运动方程,提出了Nekrasov配分函数与超对称本征值的关系,并给出了Nekrasov配分函数与超对称本征值之间的关系。在本项目的三年中,我们已经发表了11篇论文。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supersymmetric CPN sigma model on noncommutative superspace
非交换超空间上的超对称 CPN sigma 模型
- DOI:10.1143/ptp.111.961
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T. Inami;H. Nakajima
- 通讯作者:H. Nakajima
Harmonic Forms and Deformation of ALC metric with Spin(7)
带 Spin(7) 的 ALC 度量的谐波形式和变形
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Eguchi;H.Kanno;H.Kanno et al.
- 通讯作者:H.Kanno et al.
Konishi Anomaly and Central Extension in N=1/2 Supersymmetry
N=1/2 超对称中的小西异常和中心扩张
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Chong-Sun Chu;T.Inami
- 通讯作者:T.Inami
T.Eguchi, H.Kanno: "Topological Strings and Nekrasov's Formulas"Journal of High Energy Physics. 12. 006 (2003)
T.Eguchi、H.Kanno:“拓扑弦和涅克拉索夫公式”高能物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Supersymmetric CP^N Model on Noncommutative Superspace
非交换超空间上的超对称 CP^N 模型
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Chong-Sun Chu;T.Inami;D.Y.Soa et al.;T.Inami et al.
- 通讯作者:T.Inami et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INAMI Takeo其他文献
INAMI Takeo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INAMI Takeo', 18)}}的其他基金
Cosmological constant problem, gravity loop and instanton corrections
宇宙常数问题、引力环和瞬子修正
- 批准号:
24540285 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model for inflation based on higher-dimensional gauge theory
基于高维规范理论的暴胀模型
- 批准号:
21540278 - 财政年份:2009
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable field theories in higher dimensions and infinite-dimensional symmetries
高维和无限维对称性的可积场论
- 批准号:
10640283 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Field Theories in Higher Dimensions and Supersymmetry
高维和超对称中的可积场论
- 批准号:
10209209 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Quantum Field Theories in Low Dimensions and Their Application
低维量子场论及其应用
- 批准号:
06044257 - 财政年份:1994
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Overseas Scientific Survey.
Symmetry breaking and effecto of heavy particles in electro-weak gauge theories
电弱规范理论中重粒子的对称性破缺及效应
- 批准号:
04640298 - 财政年份:1992
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Quantum Theory of Extended Objects and Unification Theory
扩展物体的量子理论与统一理论
- 批准号:
01540246 - 财政年份:1989
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
带应力string方法及其在材料计算中的应用
- 批准号:11001244
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Enlarging the string theory landscape
扩大弦理论的前景
- 批准号:
23KF0214 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ensemble averages in string theory and the AdS/BCFT correspondence
弦理论中的系综平均值和 AdS/BCFT 对应关系
- 批准号:
23KJ1337 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Flavor structure and CP violation from string compactification
字符串压缩带来的风味结构和 CP 破坏
- 批准号:
23K03375 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Classification of Heterotic String Vacua
杂优势串真空的高效分类
- 批准号:
2890873 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Studentship














{{item.name}}会员




