Dynamics in multicomponent systems

多组分系统动力学

基本信息

项目摘要

This project focuses on the time-dependent density-matrix renormalization group method to simulate the dynamics of strongly correlated one-dimensional ultracold bosonic and fermionic quantum gases in optical lattices with a special emphasis on multicomponent systems. We will pursue our investigations of the use of superlattices loaded with two-species bosonic systems to observe magnetic dynamics far from equilibrium in superlattices as well as the generation of desired equilibrium states by adiabatic state preparation. In similar multispecies bosonic systems, we will investigate the dynamics of bosonic spinor condensates undergoing changes in the lattice structure (hexagonal vs. triagonal) and spin-state dependent potentials.We will also consider single-component bosonic systems with interesting out-of-equilibrium or relaxation physics: the focus will be on the relaxation in special pattern-loaded bosonic one-dimensional chains and the quantum many-body Landau-Zener effect in coupled bosonic ladders. Whereas the former is a well-controlled toy model for relaxation in a non-trivial closed quantum system, the latter is a similarly well-controlled model for adiabatic state transformations in quantum many-body systems.In fermionic systems, we will be focussing on the FFLO physics (stability, expansion dynamics) both in spin-imbalanced and mass- and spin-imbalanced systems. We will carry out extensive studies on the expansion of 1D fermionic systems after switching off the confining trap and analyze the emergence of no, ballistic or diffusive transport depending on the original quantum phase (in particular in disordered systems, where localization phenomena are expected upon release), the integrability of the model, and generally investigate the potential of this expansion method for the characterization of quantum many-body states.On the methodological side, we will be investigating new proposals to extend the reach of time-dependent DMRG to longer time-scales, mainly by switching to a Heisenberg picture, to get a better understanding of typical relaxation problems on long time scales and extract analytical relations for relaxation in interacting quantum-many body systems. This will be related to general conceptual studies of the link between high fidelity for desired states vs. high fidelity in desired observables in finite systems: the requirements for the latter will be systematically less stringent experimentally.
本项目的重点是时间相关的密度矩阵重整化群方法来模拟光学晶格中强关联的一维超冷玻色子和费米子量子气体的动力学,特别强调多组分系统。我们将继续我们的调查使用超晶格加载两种玻色子系统,观察磁动力学远离超晶格中的平衡,以及所需的平衡态的绝热状态制备的产生。在类似的多物种玻色系统中,我们将研究玻色旋量凝聚体在晶格结构上发生变化的动力学(六边形与三角形)和自旋态相关势。我们还将考虑具有有趣的非平衡或弛豫物理的单组分玻色子系统:重点将放在特殊模式加载的玻色一维链中的弛豫以及耦合玻色梯中的量子多体朗道-齐纳效应。前者是一个控制良好的玩具模型,用于非平凡封闭量子系统中的弛豫,后者是一个类似的控制良好的模型,用于量子多体系统中的绝热状态转换。在费米子系统中,我们将专注于自旋不平衡和质量和自旋不平衡系统中的FFLO物理(稳定性,膨胀动力学)。我们将对关闭限制陷阱后的一维费米子系统的膨胀进行广泛的研究,并根据原始量子相位分析no,弹道或扩散输运的出现。(特别是在无序系统中,其中在释放时预期局部化现象),模型的可积性,并从总体上研究了这种扩展方法在表征量子多体态方面的潜力。在方法学方面,我们将研究新的建议,将时间相关的DMRG的范围扩展到更长的时间尺度,主要是通过切换到海森堡图像,更好地理解长时间尺度上的典型弛豫问题,并提取相互作用的量子多体系统中弛豫的解析关系。这将与有限系统中所需状态的高保真度与所需观测量的高保真度之间联系的一般概念研究有关:对后者的要求将在实验上系统地不那么严格。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Schollwöck其他文献

Professor Dr. Ulrich Schollwöck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Schollwöck', 18)}}的其他基金

Matrix-product-state-based quantum impurity solvers
基于矩阵积态的量子杂质求解器
  • 批准号:
    228977595
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Dichtematrixrenomierung zeitabhängiger stark korrelierter Quantensysteme
时间相关、强相关量子系统的密度矩阵重命名
  • 批准号:
    5401671
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Quanten-Phasenübergänge in gemischten Spinketten
混合自旋链中的量子相变
  • 批准号:
    5172738
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing and testing a multicomponent breathwork intervention for people with chronic pain
为慢性疼痛患者开发和测试多成分呼吸干预
  • 批准号:
    10663651
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Being Safe, Healthy and Positively Empowered (BSHAPE): A Technology-Based Multicomponent Intervention to Improve Outcomes for Immigrant Women with Cumulative Exposures to Violence
安全、健康和积极赋权 (BSHAPE):基于技术的多成分干预措施,以改善累积遭受暴力的移民妇女的结局
  • 批准号:
    10802622
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Phase separation in multicomponent systems of co-transcriptionally-folded RNA nanostructures: towards autonomous synthetic cell cycles
共转录折叠RNA纳米结构多组分系统中的相分离:走向自主合成细胞周期
  • 批准号:
    2749422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Elucidating Fundamental Factors Driving Self-assembly with Guided Interactions in Multicomponent Enzyme Systems Using Model Nanostructured Platforms
使用模型纳米结构平台阐明多组分酶系统中通过引导相互作用驱动自组装的基本因素
  • 批准号:
    2108448
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel analytical methods for assessing local environments in multicomponent systems for nuclear applications
用于评估核应用多组分系统局部环境的新颖分析方法
  • 批准号:
    2890744
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
A multicomponent intervention to address gender-based violence in HIV prevention for women
采取多方干预措施解决妇女艾滋病毒预防中基于性别的暴力问题
  • 批准号:
    10005664
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Measurement and modeling of evaporation and condensation at the liquid-vapor interface of multicomponent systems
多组分系统液-汽界面蒸发和冷凝的测量和建模
  • 批准号:
    20H02062
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Variability in multicomponent ecological systems: a test of new framework
多组分生态系统的变异性:新框架的测试
  • 批准号:
    RGPIN-2015-04601
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development and pilot testing of LIMIT: a multicomponent tool to support opioid tapering
LIMIT 的开发和试点测试:支持阿片类药物逐渐减少的多组件工具
  • 批准号:
    10051325
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了