Study on machine learning for generation of finite element models of electrical machines
用于生成电机有限元模型的机器学习研究
基本信息
- 批准号:15560233
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we have developed a new method to realize automatic generation of finite element meshes for electric machines. In this method, an initial course mesh is prepared, and element properties P are computed where P is a linear combination of element features such as magnitude of magnetic induction at the element, distance from the nearest corner of magnetic material, distance from the nearest current source and so on. The element with largest P is subdivided into two finer elements. And this process is repeated until the number of elements equals a prescribed number. The error in the finite element analysis on the obtained mesh is then computed. This error strongly depends on the mesh quality, which is dependent on the weights in the linear combination of the element features. We optimize the weights using the genetic algorithm. When the weights are optimized, this method can be applied for other similar finite element models of electrical machines.It is shown that the resu … More ltant finite element mesh using the above method, called the simple method, often have flat elements which are inadequate for finite element analysis. To resolve this difficulty, we introduce mesh control techniques so that the number of subdivision of element edges is determined from their length and a criterion to choose elements to be subdivided. The finite element meshes obtained using this method, called the mesh control method, are shown to be better than those obtained using the simple method.Although the mesh quality is improved by the mesh control method, it becomes worse when the initial course mesh includes flat elements. It is difficult to overcome this problem as long as the mesh is generated from the initial mesh. For this reason, we introduce another method where the density of nodes is determined using the above mentioned machine learning, and elements are generated using the Delaunay triangulation on the basis of the nodes obtained above. This method is shown to improve the mesh quality. Less
在本研究中,我们开发了一种实现电机有限元网格自动生成的新方法。该方法制备初始过程网格,计算单元属性P,其中P是单元处磁感应强度、到磁性材料最近角的距离、到最近电流源的距离等元素特征的线性组合。P值最大的元素被细分为两个更小的元素。这个过程不断重复,直到元素的数量等于一个规定的数量。然后计算所得网格的有限元分析误差。这种误差很大程度上取决于网格质量,而网格质量又取决于元素特征线性组合中的权重。我们使用遗传算法优化权重。当权重优化后,该方法可应用于其他类似电机有限元模型。结果表明,采用上述方法(称为简单法)得到的有限元网格中往往存在平面单元,不适合进行有限元分析。为了解决这一难题,我们引入了网格控制技术,根据元素边缘的长度和选择要细分的元素的标准来确定元素边缘的细分次数。用这种方法得到的有限元网格,称为网格控制方法,比用简单方法得到的网格要好。虽然网格控制方法提高了网格质量,但当初始过程网格中包含平面元素时,网格质量会变差。只要从初始网格生成网格,就很难克服这个问题。因此,我们引入另一种方法,使用上述机器学习确定节点的密度,并在上述获得的节点的基础上使用Delaunay三角剖分生成元素。该方法可以提高网格质量。少
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel multiobjective immune algorithm using nondominated sorting
一种使用非支配排序的新型多目标免疫算法
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:F.Campelo;H.Igarashi;etc.
- 通讯作者:etc.
遺伝的アルゴリズムによる重み付き評価型アダプティブ・メッシング手法
使用遗传算法的加权评估自适应网格划分方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:A.Kameari;H.Igarashi;S.Wakao;藤森 寛朝
- 通讯作者:藤森 寛朝
Estimation of Effective Permeability of Magnetic Composite Materials
磁性复合材料有效磁导率的估算
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Waki;H.;Igarashi;H.;Honma;T.
- 通讯作者:T.
H.Igarashi, A.Yamamoto, T.Honma: "Mesh Generation Based on Machine Learning"Proc. COMPUMAG-Saratoga. vol.1. 28-29 (2003)
H.Igarashi、A.Yamamoto、T.Honma:“基于机器学习的网格生成”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A clonal selection algorithm for optimization in electromagnetics
- DOI:10.1109/tmag.2005.846043
- 发表时间:2005-05
- 期刊:
- 影响因子:2.1
- 作者:F. Campelo;F. Guimarães;H. Igarashi;J. A. Ramírez
- 通讯作者:F. Campelo;F. Guimarães;H. Igarashi;J. A. Ramírez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IGARASHI Hajime其他文献
IGARASHI Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IGARASHI Hajime', 18)}}的其他基金
Development of passive wireless sensor powered by vibration generator for safety surveillance of social infractructure
开发用于社会基础设施安全监测的振动发生器驱动的无源无线传感器
- 批准号:
24310117 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Passive Wireless Sensors for Safety Monitoring of Infrastructures
用于基础设施安全监测的无源无线传感器研究
- 批准号:
21510173 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equilibrium analysis of free boundary MHD plasma with bootstrap current
具有自举电流的自由边界 MHD 等离子体的平衡分析
- 批准号:
05452389 - 财政年份:1993
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
- 批准号:
573136-2022 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
- 批准号:
2795756 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
- 批准号:
22K04278 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
- 批准号:
20K10160 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Research Fellowships