Analysis and Design of Control Systems Using Piecewise Linear Lyapunov Functions
利用分段线性李亚普诺夫函数的控制系统分析与设计
基本信息
- 批准号:15560377
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main results obtained through the research are summarized as follows.1.Generalization of the class of piecewise linear Lyapunov functions.We proposed a new class of piecewise linear Lyapunov functions (PWLLFs) and derived stability results. A candidate of PWLLF has parameters corresponding to piecewise linear function defined in the region divided by hyperplanes. The set of stability conditions are formulated as Linear Programming Problem (LP) in terms of parameters inserted by piecewise linear functions. If the computed optimal value is negative, we construct a PWLLF using the solution. When the optimal value of the LP is nonnegative, we modify the PWLLF candidate by adding appropriate hyperplanes to introduce more freedom in the LP formulation and arrive at the desired result. We derived a new condition for generating hyperplanes such that the optimal value of the new LPs is less than that of the old LP. This condition is an improvement of the previous result. By adopting this me … More thod, we can generate a PLLF for some systems, for which we could not generate a PLLF.2.Enlargement of estimates of stability regions.In this research project, we are interested in semi-global stability rather than the global stability. In this respect, it is very important issues to compute larger estimates of stability regions or to design controller so that the closed system has large stability region. We proposed a method to achieve this.3.Design of nonlinear servo systems.We proposed a design method of nonlinear servo systems by using PLLFs. This method reduces conservativeness included in previous results. To improve the transient response characteristic, we proposed a scheme, which adopts idea based on the reference governor and the linear quadratic regulator theory.4.Fast solving methods for bilinear optimization problems.When we design controller using PLLFs, we need to solve bilinear optimization problems, which are not convex problems. To solve bilinear optimization problems, we applied the Zoutendijk's method, a genetic algorithm based on Imanishi's evolution theory and the probabilistic approach for some examples. Each method has both the advantage and the disadvantage. Further research on this issue is needed. Less
主要研究结果总结如下:1、研究结果:分段线性李雅普诺夫函数类的推广。提出了一类新的分段线性Lyapunov函数(pwllf),并给出了稳定性结果。一个PWLLF候选函数的参数对应于定义在超平面划分区域内的分段线性函数。将稳定性条件集表述为分段线性函数插入参数的线性规划问题(LP)。如果计算出的最优值为负,则利用该解构造一个PWLLF。当LP的最优值为非负时,我们通过添加适当的超平面来修改PWLLF候选者,从而在LP公式中引入更多的自由度,从而得到期望的结果。我们得到了一个新的生成超平面的条件,使得新LP的最优值小于旧LP的最优值。这个条件是对先前结果的改进。通过采用这种方法,我们可以为一些无法生成PLLF的系统生成PLLF。稳定区域估计的扩大。在这个研究项目中,我们关注的是半全局稳定性,而不是全局稳定性。在这方面,计算更大的稳定区域估计或设计控制器使封闭系统具有更大的稳定区域是非常重要的问题。我们提出了一种实现这一目标的方法。非线性伺服系统的设计。提出了一种基于PLLFs的非线性伺服系统设计方法。该方法降低了以往结果的保守性。为了改善系统的暂态响应特性,提出了一种基于参考调速器和线性二次调速器理论的方案。双线性优化问题的快速求解方法。当我们使用PLLFs设计控制器时,我们需要解决双线性优化问题,而不是凸问题。为了解决双线性优化问题,我们应用了Zoutendijk方法、基于Imanishi进化理论的遗传算法以及一些实例的概率方法。每种方法都有优点和缺点。这个问题需要进一步的研究。少
项目成果
期刊论文数量(84)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
W.Kitamura: "Convergence Properties of the Membership Set in the Presence of Disturbance and Parameter Uncertainty"計測自動制御学会論文集. 第39巻・第4号. 382-387 (2003)
W.Kitamura:“存在干扰和参数不确定性时隶属集的收敛性”,仪器与控制工程师学会汇刊,第 39 卷,第 4 期。382-387 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Fujisaki: "Probabilistic Design of LPV Control Systems"Automatica. 第39巻・第8号. 1323-1337 (2003)
Y. Fujisaki:“LPV 控制系统的概率设计”Automatica,第 39 卷,第 8 期。1323-1337 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Robust stabilization of control systems using piecewise linear Lyapunov functions and evolutionary algorithm
使用分段线性 Lyapunov 函数和进化算法实现控制系统的鲁棒稳定性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Tagawa
- 通讯作者:K.Tagawa
アフォーダンス理論による人工技能への接近-記憶と身体性-
通过可供性理论接近人工智能-记忆和身体-
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:N.Kitamura;Y.Fujisaki;Y.Ohta;Y.Ohta;Y.Ohta;Y.Fujisaki;W.Kitamura;田川聖治
- 通讯作者:田川聖治
Guaranteed Cost Regulator Design : Probabilistic Solution and Randomized Algorithm
保证成本调节器设计:概率解和随机算法
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Tagawa;Y.Ohta;K.Tagawa;Y.Fujisaki;Y.Ohta;Y.Ohta;Y.Fujisaki
- 通讯作者:Y.Fujisaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTA Yuzo其他文献
OHTA Yuzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTA Yuzo', 18)}}的其他基金
Analysis and Design of Switched Control Systems
切换控制系统的分析与设计
- 批准号:
17560394 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and Design of Control Systems Utilizing Data Structure and Algorithms
利用数据结构和算法的控制系统分析与设计
- 批准号:
13650487 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Aided Design of Robust Control Systems Computational Geometry Approach
鲁棒控制系统的计算机辅助设计计算几何方法
- 批准号:
11650448 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Aided Design of Robust Control Systems Using Polygon Interval Arithmetic
使用多边形区间算法的计算机辅助鲁棒控制系统设计
- 批准号:
09650474 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH ON DEVELOPMENT OF CAD SYSTEM FOR ROBUST CONTROL SYSTEMS BY USING POLYGON INTERVAL ARITHMETIC
利用多边形区间算法开发鲁棒控制系统CAD系统的研究
- 批准号:
07650494 - 财政年份:1995
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
OPERATION ON SETS AND IT'S APPLICATIONS TO COMPUTER AIDED DESIGN OF ROBUST CONTROL SYSTEMS
集运算及其在鲁棒控制系统计算机辅助设计中的应用
- 批准号:
63550311 - 财政年份:1988
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
- 批准号:
23K03911 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
- 批准号:
22K18838 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nonlinear Control and Observer Designs for Flow-Transport Systems
流体传输系统的非线性控制和观察器设计
- 批准号:
2205117 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Construction of neural feedback and brain stimulation methods by nonlinear control for neural dynamics of ADHD
ADHD神经动力学非线性控制的神经反馈和脑刺激方法的构建
- 批准号:
22K12194 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced multivariable nonlinear control methodology for matrix converters
用于矩阵转换器的先进多变量非线性控制方法
- 批准号:
DP220103928 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Projects
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
- 批准号:
21H03518 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Development and Experimental Validation of Nonlinear Control Theory for Tower Cranes
塔式起重机非线性控制理论的开发和实验验证
- 批准号:
20K04554 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of desktop validation method for nonlinear control systems based on numerical optimization and game theory
基于数值优化和博弈论的非线性控制系统桌面验证方法的开发与应用
- 批准号:
19K04279 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)