Geometric, topological, and stochastic approaches in nonlinear control theory

非线性控制理论中的几何、拓扑和随机方法

基本信息

  • 批准号:
    RGPIN-2016-05405
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Nonlinear control theory is an important branch of control theory, with applications in areas and industries as diverse as power grids, aerospace systems, biomedical systems, nano-engineering, process control, chemical engineering, and many others. It stands out by the richness of its problems and the diversity of mathematical areas that it connects to. Worthy of note among the latter is sub-Riemannian geometry, which continues to play a key role in our understanding of nonlinear control systems. By virtue of restricting itself to a narrow and well-behaved class of control systems, linear control theory enjoys a rich and well-established body of theoretical tools and techniques, drawn principally from linear functional analysis. By contrast, nonlinear control theory is far from enjoying this level of maturity, and intensive efforts have been deployed in devising new tools and approaches. From the advent of the first modern control systems to the present day, the two key problems of control theory continue to be, very broadly, Control and Stabilization. Whereas these notions and the relations between them are very well understood for linear control, this is still far from being the case for nonlinear control systems. The long term objective of our research program is, in very broad terms, to understand the deep nature of and the relations between controllability and stabilizability in nonlinear control systems, to the same extent as is currently the case in linear control theory. In the shorter term, we plan to concentrate on the following four problems: (a) Define the appropriate geometrical structure associated to a nonlinear control system, compute the local invariants of this geometry, and relate these invariants to local controllability and stabilizability properties of the control system. (b) Refine the existing topological obstructions to the local stabilization of a nonlinear control system through the study of topological structures canonically associated to a control system. (c) Relate the hypoelliptic heat operator of left-invariant sub-Riemannian structures on Lie groups to the conjugate structure of those geometries. (d) Extend Stein's classical method of probabilistic approximation to the computation of hypoelliptic heat kernel short-time asymptotics. The graduate and undergraduate students who will contribute to this research program will delve into very rich mathematical theories, thereby acquiring an excellent training in mathematics research, as well as an excellent preparation for a career in the mathematical sciences.
非线性控制理论是控制理论的一个重要分支,其应用领域和行业广泛,如电网、航空航天系统、生物医学系统、纳米工程、过程控制、化学工程等。它突出了丰富的问题和多样性的数学领域,它连接到。在后者中值得注意的是亚黎曼几何,它继续在我们理解非线性控制系统中发挥关键作用。由于线性控制理论仅限于一类狭窄且性能良好的控制系统,因此它拥有丰富且完善的理论工具和技术,主要来自线性泛函分析。相比之下,非线性控制理论远未达到这种成熟程度,人们已经在设计新的工具和方法方面做出了大量努力。 从第一个现代控制系统的出现到今天,控制理论的两个关键问题仍然是,非常广泛的,控制和稳定。尽管这些概念和它们之间的关系对于线性控制来说已经很好理解了,但对于非线性控制系统来说,情况还远未如此。我们的研究计划的长期目标是,在非常广泛的条款,理解的深层性质和可控性和稳定性之间的关系,在非线性控制系统,在相同的程度上是目前的情况下,在线性控制理论。 在短期内,我们计划集中处理以下四个问题: (a)定义与非线性控制系统相关联的适当几何结构,计算该几何结构的局部不变量,并将这些不变量与控制系统的局部可控性和稳定性属性相关联。 (b)通过对控制系统拓扑结构的研究,消除了非线性控制系统局部镇定的拓扑障碍。 (c)将李群上左不变次黎曼结构的亚椭圆热算子与这些几何的共轭结构联系起来。 (d)将Stein的经典概率逼近方法推广到亚椭圆热核短时渐近性的计算。 研究生和本科生谁将有助于这个研究计划将深入研究非常丰富的数学理论,从而获得数学研究的优秀培训,以及在数学科学的职业生涯的良好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mansouri, AbdolReza其他文献

Mansouri, AbdolReza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mansouri, AbdolReza', 18)}}的其他基金

Topological obstructions in the control of partial differential equations
偏微分方程控制中的拓扑障碍
  • 批准号:
    RGPIN-2022-03832
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Orbifold Gromov-Witten理论研究
  • 批准号:
    11171174
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Topological semiconductors resonate with an elusive form of radiation
拓扑半导体与难以捉摸的辐射形式产生共振
  • 批准号:
    DP240101062
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Topological phonons in solids
固体中的拓扑声子
  • 批准号:
    DE240100627
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Early Career Researcher Award
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fellowship Award
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了