Development of Similar Image Subtraction Method for Digital Chest Radiographs

数字胸片相似图像相减方法的开发

基本信息

项目摘要

We have developed a computerized scheme of similar image subtraction method which provides subtraction images obtained from similar chest radiographs of different patients. In this study, an image to be diagnosed is called "target image".1.A large image database was established with 8776 normal chest radiographs(5352 female images and 3424 male images) obtained from a lung cancer screening in Iwate prefecture. All images were taken from a computed radiography(CR) system.2.Similar images of a target image were searched from a large database consist of normal chest radiographs. First, initial candidates of the similar image(10% in the database) were selected by the similarity of the lung size between the target image and normal images. Second, further similar images were chosen from the initial candidates by using their correlation values between the target image and candidates.3.Finally, subtraction images were produced by subtracting the selected similar images of different patients from the target image. The subtraction was performed with a global matching and local matching based on a nonlinear image warping technique.4.The quality of the subtraction images obtained from similar chest radiographs of different patients were evaluated subjectively in terms of artifacts due to misregistration between a target image and a similar image.5.Similar images selected from the database were remarkably resembled to the target chest radiographs. Although the subtracted images obtained from different patients included some artifacts, their image qualities were acceptable for detection of abnormal lesions. Approximately, 40% of the subtraction images obtained from the similar images were considered clinically useful to enhance abnormalities in chest radiographs.
我们开发了一种类似图像减影方法的计算机化方案,它提供了从不同患者的相似胸片中获得的减影图像。1.以岩手县肺癌筛查获得的8776张正常胸片为研究对象,建立了大型影像数据库。所有图像均来自计算机X线摄影(CR)系统。2.从由正常胸片组成的大型数据库中搜索目标图像的相似图像。首先,根据目标图像和正常图像肺大小的相似度,选择相似图像(数据库中10%)的初始候选者。然后,利用目标图像与候选图像之间的相关值,从初始候选图像中进一步选取相似图像;最后,将选取的不同患者的相似图像从目标图像中减去,得到减影图像。采用基于非线性图像扭曲的全局匹配和局部匹配相结合的方法进行减影。4.对不同患者的相似胸片的减影图像质量进行主观评价。5.从数据库中选取相似图像,使其与目标胸片具有显著的相似性。虽然从不同患者获得的减影图像中包含一些伪影,但它们的图像质量对于异常病变的检测是可以接受的。从相似图像中获得的减影图像中,约有40%被认为对增强胸部X线片中的异常有临床意义。

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved detection of lung cancer arising in diffuse lung diseases on chest radiographs using temporal subtraction
  • DOI:
    10.1016/s1076-6332(03)00820-1
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Okazaki, H;Nakamura, K;Katsuragawa, S
  • 通讯作者:
    Katsuragawa, S
桂川茂彦: "胸部コンピュータ支援診断(CAD)システムにおける技術的課題"日放技会誌. 59・11. 1358-1360 (2003)
桂川茂彦:“胸部计算机辅助诊断(CAD)系统的技术问题”日本无线电工程学会杂志 59・11(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
胸部X線CT像のCAD
胸部X线CT图像CAD
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Abe;T.Ishida;J.Shiraishi;F.Li;S.Katsuragawa;S.Sone;H.MacMahon;K.Doi;桂川茂彦
  • 通讯作者:
    桂川茂彦
Investigation of misfiled cases in the PACS environment and a solution to prevent filing errors for chest radiographs
  • DOI:
    10.1016/j.acra.2004.11.008
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Morishita, J;Watanabe, H;Doi, K
  • 通讯作者:
    Doi, K
ROC解析による画像の正しい主観的評価
使用 ROC 分析正确对图像进行主观评价
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Abe;T.Ishida;J.Shiraishi;F.Li;S.Katsuragawa;S.Sone;H.MacMahon;K.Doi;桂川茂彦;S.Kakeda;桂川茂彦
  • 通讯作者:
    桂川茂彦
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATSURAGAWA Shigehiko其他文献

KATSURAGAWA Shigehiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATSURAGAWA Shigehiko', 18)}}的其他基金

Development of Computer-Aided Diagnosis System in Screening Digital Chest Radiographs
数字化胸片筛查计算机辅助诊断系统的开发
  • 批准号:
    08671046
  • 财政年份:
    1996
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer-Aided Diagnosis System in Chest Radiography
胸部X线计算机辅助诊断系统
  • 批准号:
    06454326
  • 财政年份:
    1994
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
  • 批准号:
    23H03461
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A computational approach to identify non-linear sequence similarity between lncRNAs
识别 lncRNA 之间非线性序列相似性的计算方法
  • 批准号:
    2228805
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313039
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Tackling Big Data problems in biomedical sciences with extended similarity methods
使用扩展相似性方法解决生物医学科学中的大数据问题
  • 批准号:
    10713143
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Development of Fundamental Technologies for Similarity Search of Human Genome Structural Variant Data
人类基因组结构变异数据相似性搜索基础技术的开发
  • 批准号:
    23K11319
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SMILE-PD: Similarity Matching In Longitudinal Electronic Patient Data
SMILE-PD:纵向电子患者数据中的相似性匹配
  • 批准号:
    10799090
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313040
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Classification of structure similarity and mode of action of chemicals with high chronic toxicity to daphnids
对水蚤具有高慢性毒性的化学物质的结构相似性和作用方式的分类
  • 批准号:
    23K11466
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
  • 批准号:
    10750556
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了