Development of Computer-Aided Diagnosis System in Screening Digital Chest Radiographs
数字化胸片筛查计算机辅助诊断系统的开发
基本信息
- 批准号:08671046
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I have developed a system of computer-aided diagnosis (CAD) in screening digital chest radiography for improvement of detection accuracy of lung nodules. CAD refers to a diagnosis by a radiologist taking into consideration the results of an automated computer analysis of radiographic images as a "second opinion." In this project, I improved a computerized detection method of lung nodules, which was developed previously.In addition, I performed a preliminary research of temporal subtraction technique which can enhance the interval changes by subtracting a previous image from a current one.1.I derived a new detection algorithm which increases the contrast of lung nodules with various sizes by using matched filters. I applied this method for 200 chest radiographs with lung nodules in order to investigate the detection accuracy. The detection performance was 79% of true positive at 1.7 false positives/image.2.I derived a temporal subtraction technique with traslation, rotation and warping for matching previous and current images. I applied this technique for 876 pairs of previous and current images obtained by a mobile computed radiography (CR) system. 76.7% of subtraction images without misregistration artifacts were successfully provided.3.I provided an image database including approximately 10,000 pairs of previous and current images during the term of this project.4.My results indicates that this CAD system has a potential usefulness for radiologists to detect lung nodules in the screening chest radiography.
为了提高肺部结节的检测准确率,我开发了一套计算机辅助诊断(CAD)系统,用于筛选数字胸片。CAD指的是放射科医生在考虑到计算机自动分析放射图像的结果后做出的诊断,并将其作为“第二意见”。在本项目中,我改进了先前开发的一种肺结节的计算机化检测方法,并对时间相减技术进行了初步研究,该技术可以通过从当前图像中减去先前的图像来增强间隔变化。1.我推导了一种新的检测算法,该算法利用匹配滤波器来增强不同大小的肺结节的对比度。我将这种方法应用于200例肺部结节的胸部X线片,以考察其检测的准确性。在每幅图像1.7个假阳性的情况下,检测性能为真阳性的79%。2.我提出了一种结合平移、旋转和翘曲的时间减法技术,用于匹配以前和当前图像。我将这项技术应用于通过移动计算机放射成像(CR)系统获得的876对以前和现在的图像。76.7%的减影图像没有配准错误伪影。3.我在本项目期间提供了一个包含约10,000对以前和当前图像的图像数据库。4.我的结果表明,该计算机辅助设计系统对放射科医生在筛查胸部摄影中发现肺结节具有潜在的实用价值。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Okabe: Radiological Science : 14 Medical Imaging. Ishiyaku Publishers Inc., Tokyo, 300 (1997)
T.Okabe:放射科学:14 医学成像。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ishida: "Computerized analysis of interstitial disease in chest radiographs: Improvement of geometric-pattern feature analysis" Medical Physics. 24・6. 915-924 (1997)
T. Ishida:“胸部X光片中间质疾病的计算机化分析:几何图案特征分析的改进”医学物理学24・6(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigehiko Katsuragawa: "Computer-aided diagnosis of interstitial disease in digital chest radiographs : Classification of normal and abnormal lungs by rule-based method and artificial neural networks" Journal of Digital Imaging. 10・3. 108-114 (1997)
Shigehiko Katsurakawa:“数字胸部X光片中间质性疾病的计算机辅助诊断:通过基于规则的方法和人工神经网络对正常和异常肺部进行分类”《数字成像杂志》10・3(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigehiko Katsuragawa: "Computer-aided diagnosis of interstitial disease in digital chest radiographs : Classification of normal and abnormal lungs by rule-based method and artificial neural networks" Journal of Digital Imaging. 9・3. 137-144 (1996)
Shigehiko Katsurakawa:“数字胸部X光片中间质性疾病的计算机辅助诊断:通过基于规则的方法和人工神经网络对正常和异常肺部进行分类”《数字成像杂志》9・3(1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takayuki Ishida: "Computerized analysis of interstitial disease in chest radiographs : Improvement of geometric-pattern feature analysis" Medical Physics. 24・6. 915-924 (1997)
Takayuki Ishida:“胸部X光片中间质疾病的计算机化分析:几何图案特征分析的改进”医学物理学24・6(1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATSURAGAWA Shigehiko其他文献
KATSURAGAWA Shigehiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATSURAGAWA Shigehiko', 18)}}的其他基金
Development of Similar Image Subtraction Method for Digital Chest Radiographs
数字胸片相似图像相减方法的开发
- 批准号:
15591311 - 财政年份:2003
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer-Aided Diagnosis System in Chest Radiography
胸部X线计算机辅助诊断系统
- 批准号:
06454326 - 财政年份:1994
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
- 批准号:
10644765 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
A study of computer aided diagnosis system of cervical cytology using deep learning.
基于深度学习的宫颈细胞学计算机辅助诊断系统的研究
- 批准号:
23K08849 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and sophistication of computer-aided diagnosis software based on the diagnostic imaging procedure of doctors
基于医生诊断成像流程的计算机辅助诊断软件的开发和完善
- 批准号:
22K15877 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interpretability and Fairness in Deep Learning for Computer-Aided Diagnosis
计算机辅助诊断深度学习的可解释性和公平性
- 批准号:
575945-2022 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
- 批准号:
RGPIN-2020-05873 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
- 批准号:
RGPIN-2020-05873 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Development of a general-purpose computer-aided diagnosis system using VAE that can be used for a small number of cases
使用VAE开发可用于少量病例的通用计算机辅助诊断系统
- 批准号:
21H03840 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Image Analysis and Machine Learning Techniques for Computer-aided Diagnosis
用于计算机辅助诊断的图像分析和机器学习技术
- 批准号:
RGPIN-2020-05873 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Computer-aided Diagnosis for Osteonecrosis of the jaw using Artificial Intelligence and Radiomics Analysis
利用人工智能和放射组学分析对颌骨坏死进行计算机辅助诊断
- 批准号:
20K20221 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Deep Convolutional Neural Network for Computer-Aided Diagnosis of Ischemic Heart Disease
缺血性心脏病计算机辅助诊断深度卷积神经网络的发展
- 批准号:
20K20233 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




