Probing and tuning the atomistic antisymmetric exchange interaction at interfaces
探测和调整界面处的原子反对称交换相互作用
基本信息
- 批准号:464601172
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The properties of magnetic solids are governed by the interplay between different microscopic magnetic interactions, i.e., symmetric Heisenberg exchange interaction, antisymmetric Dzyaloshiskii-Moriya interaction (DMI), dipolar interactions, biquadratic interactions, magnetic anisotropy, etc. Owing to its antisymmetric nature, DMI can stabilize topologically protected spin textures, having a unique rotation sense. Examples are spin spirals, spin helixes, skyrmions and antiskyrmions. These are magnetic whirls with a well-defined topological charge. The most important property of theseobjects is that they couple efficiently to spin currents and show a great potential to be used as information storage in future ultrahigh-density, and energy-efficient spin-based logic devices.In this project, we aim to tailor the DMI in magnetic thin films and multilayers. The main objective of the project is twofold. First, we would like to tune the DMI by introducing an additional structural asymmetry in the atomic bilayers made of ferromagnetic materials grown on heavy metal substrates. We will examine different bilayers on W(110) and Ir(111) surfaces. Both the Heisenberg exchange and the DMI will be probed by magnon spectroscopy. Second, we will introduce an additional asymmetry in these systems by adding a monolayer of a heavy metal e.g., Pt on top of these structures and investigate the influence of the additional interface. A complete investigation of all these systems would allow us to understand the fundamental details of the symmetric and antisymmetric magnetic interactions and, in the next step, would enable us to provide guidelines for quantum engineering of these interactions on the atomic length-scales. Such a knowledge is essential to design magnetic multilayers and superlattices, which show specific properties or can host exotic topological spin textures.
磁性固体的性质由不同微观磁性相互作用之间的相互作用决定,即,对称海森堡交换相互作用、反对称Dzyaloshiskii-Moriya相互作用(Dzyaloshiskii-Moriya interaction)、偶极相互作用、双二次相互作用、磁各向异性等。由于其反对称性质,Dzyaloshiski-Moriya相互作用可以稳定拓扑保护的自旋织构,具有独特的旋转方向。例子是自旋螺旋,自旋螺旋,skyrmions和antiskyrmions。这些是具有明确拓扑电荷的磁旋。这些材料最重要的特性是它们能有效地与自旋电流耦合,在未来超高密度、高能效的自旋逻辑器件中显示出巨大的信息存储潜力。该项目的主要目标有两个。首先,我们想通过在重金属衬底上生长的铁磁材料制成的原子双层中引入额外的结构不对称性来调整介电常数。我们将研究W(110)和Ir(111)表面上的不同双层。海森伯交换和磁振子都将用磁振子光谱学来探测。第二,我们将通过添加重金属单层在这些系统中引入额外的不对称性,例如,Pt在这些结构的顶部,并研究额外的接口的影响。对所有这些系统的全面研究将使我们能够理解对称和反对称磁相互作用的基本细节,并且在下一步中,将使我们能够为原子长度尺度上这些相互作用的量子工程提供指导。这样的知识是必不可少的设计磁性多层膜和超晶格,表现出特定的属性或可以主机奇异的拓扑自旋纹理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Khalil Zakeri Lori其他文献
Privatdozent Dr. Khalil Zakeri Lori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Privatdozent Dr. Khalil Zakeri Lori', 18)}}的其他基金
Spin excitations in correlated quantum materials
相关量子材料中的自旋激发
- 批准号:
429255030 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Heisenberg Grants
Collective Excitations at the FeSe(001) Surface and in Ultrathin FeSe Films
FeSe(001) 表面和超薄 FeSe 薄膜中的集体激发
- 批准号:
425857499 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Spin excitations in correlated quantum materials
相关量子材料中的自旋激发
- 批准号:
317171825 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Spin excitations in ultrathin metallic films
超薄金属薄膜中的自旋激发
- 批准号:
317174088 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Atomic-scale magnetic architectures with unconventional magnonic states
具有非常规磁能态的原子尺度磁性结构
- 批准号:
524533417 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
- 批准号:
2411680 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
- 批准号:
DP240100687 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
- 批准号:
BB/Y514032/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
- 批准号:
MR/Y011708/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship