DEVELOPMENT OF A VIRTUAL NUMERICAL LABORATORY FOR EARTH-PLANETARY FLUID DYNAMICS USING SPECTRAL METHODS

使用光谱方法开发地球-行星流体动力学虚拟数值实验室

基本信息

  • 批准号:
    15607004
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

The research was accomplished aiming to construct a virtual "numerical laboratory" of earth planetary fluid in the Internet.As for the development of necessary spectral methods, a new spectral method was developed for shallow water equations on a disk, the details of which are published as two original papers. This method uses Jacobi polynomials as a basis of expansion to avoid the singularity at the origin which often appears when the polar coordinate is adopted. The novelty of the method is in expanding vector fields directly.In addition, new spectral methods for 1d/2d infinite domains are developed, and the paper is being prepared now. By using this technique, numerical experiments of gravity wave radiation from an unstable jet in a shallow water system are conducted. The parameter dependency of the gravity waves are examined, and it is contributing as a submitted paper. The developed numerical library is distributed freely as http://www.gfd-dennou.org/arch/ispack/ispack-0.62beta.tar.gz. Furthermore, the first textbook for spectral methods in Japanese is published based on the experiences in the development of the numerical library.To provide the virtual laboratory environment, a firm web server is newly started up, which maintains not only the source code of a series of developed spectral models for the earth planetary fluid calculation and the explanation, but also the execution result of a typical exercise. The contents are distributed freely as http://www.gfd-dennou.org/arch/spmodel/.
这项研究的目的是在互联网上建立一个虚拟的地球行星流体“数值实验室”。为了开发必要的谱方法,开发了一种新的谱方法来求解圆盘上的浅水方程,其详细内容作为两篇原文发表。该方法采用雅可比多项式作为展开基,避免了采用极坐标时常出现的原点奇异性。该方法的新颖之处在于直接展开矢量场。此外,还发展了一维/二维无限域的新的谱方法,目前正在准备论文。利用该技术,对浅水系统中不稳定喷流产生的重力波辐射进行了数值实验。研究了重力波的参数相关性,并作为一篇提交的论文做出了贡献。开发的数学库以http://www.gfd-dennou.org/arch/ispack/ispack-0.62beta.tar.gz.的形式免费发布此外,在数学库开发经验的基础上出版了第一本日语光谱方法教科书,为提供虚拟实验室环境,新启动了一个坚固的Web服务器,该服务器不仅保存了一系列已开发的用于地球行星流体计算和解释的光谱模型的源代码,而且还保存了一个典型练习的执行结果。内容以http://www.gfd-dennou.org/arch/spmodel/.的形式免费分发

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introduction to spectral methods
  • DOI:
    10.1051/eas:2006112
  • 发表时间:
    2006-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Grandclément
  • 通讯作者:
    P. Grandclément
Spectral method for shallow-water equation on a disk -- I. Basic formulation
圆盘上浅水方程的谱法——一、基本公式
Spectral method for shallow-water equation on a disk -- II. Numerical examples
圆盘上浅水方程的谱法——II.
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.Hasegawa;K.Ishioka;S.Yoden;石岡圭一;石岡圭一;石岡圭一;KEIICHI ISHIOKA;KEIICHI ISHIOKA
  • 通讯作者:
    KEIICHI ISHIOKA
Asymmetrization of Jet Profiles in β-plane Turbulence
β 平面湍流中射流轮廓的不对称性
円盤領域の浅水方程式に対するスペクトル法
盘区浅水方程的谱法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIOKA Keiichi其他文献

Evolution of the local galaxies・13th symposium on Discovery, Fusion, Creation of New Knowledge by Multidisciplinary Computational Sciences
本星系的演化·第13届多学科计算科学的发现、融合、新知识创造研讨会
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ISHIOKA Keiichi;YAMAMOTO Naoto;FUJITA Masato;Masao Mori
  • 通讯作者:
    Masao Mori
A Formulation of a Three-Dimensional Spectral Model for the Primitive Equations
原方程三维谱模型的建立

ISHIOKA Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIOKA Keiichi', 18)}}的其他基金

Development of a numerical library for geophysical fluid dynamics on desktop supercomputers
在桌面超级计算机上开发地球物理流体动力学数值库
  • 批准号:
    22654056
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research

相似海外基金

A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Uncertainty Quantification of Flutter Simulations by the Fast Time-Spectral Method
快速时谱方法对颤振仿真的不确定性量化
  • 批准号:
    19K04835
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
  • 批准号:
    1645445
  • 财政年份:
    2016
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
  • 批准号:
    1522577
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Gaussian-Localized Polynomial Approximation: A Well-Conditioned Spectral Method for Solving Partial Differential Equations in Complicated Domains
高斯局部多项式逼近:求解复杂域中偏微分方程的良好条件谱方法
  • 批准号:
    1521158
  • 财政年份:
    2015
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了