A new spectral method approach for singular integral equations

奇异积分方程的新谱法

基本信息

  • 批准号:
    RGPIN-2017-05514
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research programme is centred around the introduction of a new, fast, and spectrally accurate algorithm for solving general singular integral equations on complicated one-dimensional boundaries, which allows for a representation of the solution of elliptic partial differential equations in two spatial dimensions. Singular integral equations have a rich history in acoustic scattering for electromagnetics and seismic imaging, fracture mechanics, fluid dynamics, and beam physics.******Results of the programme will be implemented in an open source package written in the Julia programming language. Theoretical determination of the endpoint singularities of the boundary densities allows for the direct solver to obtain spectrally accurate global solutions without the use of h-p adaptive refinement. By successfully furthering the development of a new class of direct solvers, the software package will solve a wide range of singular integral equations in a stable and timely manner.******The recently introduced direct solver will be combined with a hierarchical solver based on recursive block diagonalization via Schur complements. This will specifically exploit the hierarchically off-diagonal low-rank structure arising from coercive singular integral operators of elliptic partial differential equations. The hierarchical solver involves a pre-computation phase independent of the forcing term. Once this pre-computation factorizes the operator, the solution to many forcing terms has a lower complexity and therefore takes a fraction of the time.******This programme will also consider singular integral equations defined on an important class of boundaries: those that are polynomial maps from the unit interval and circle. A considerable analysis will be performed to again obtain banded singular integral operators via the spectral mapping theorem. Solving singular integral equations with either mixed boundary conditions or multiply connected contours leads to piecewise-defined solutions with complicated algebraic singular structure at the junctions. These difficulties will be approached by designing bases that fully capture this complicated singular structure arising at the junctions.******The new spectral method will be applied to solve problems of Stokes flow, the biharmonic equation and stress and strain computations for fracture mechanics. Combination of the new spectral method with stable and high-order time-stepping schemes will allow for the exploration of time-domain integral formulations of the Helmholtz equation and the simulation of RayleighTaylor instability. It will also allow experimentation and potential discovery of new phenomena in important applications such as optical metacages at the nanoscale, the solution of inverse scattering problems, and simulation of the BenjaminOno equation for internal waves in deep water.
本研究计划的核心是引入一种新的、快速的、光谱精确的算法来求解复杂一维边界上的一般奇异积分方程,该算法允许在两个空间维度上表示椭圆型偏微分方程的解。奇异积分方程在电磁学、地震成像、断裂力学、流体力学和波束物理的声散射中有着丰富的历史。******该计划的结果将在一个用Julia编程语言编写的开源包中实现。边界密度端点奇点的理论确定允许直接求解器在不使用hp自适应细化的情况下获得光谱精确的全局解。通过成功地进一步开发一类新的直接求解器,该软件包将以稳定和及时的方式求解广泛的奇异积分方程。******最近引入的直接求解器将与基于递归块对角化的分层求解器结合使用。这将特别利用由椭圆型偏微分方程的强制奇异积分算子引起的层次非对角低秩结构。分层求解器涉及一个独立于强迫项的预计算阶段。一旦这种预计算分解了算子,求解许多强迫项的复杂性就会降低,因此只需要一小部分时间。******本程序还将考虑定义在一类重要边界上的奇异积分方程:那些是从单位区间和圆的多项式映射的方程。我们将通过谱映射定理对带奇异积分算子进行大量的分析。求解具有混合边界条件或多重连通轮廓的奇异积分方程会导致结点处具有复杂代数奇异结构的分段定义解。这些困难将通过设计完全捕捉在连接处产生的复杂单一结构的碱基来解决。******新的谱法将应用于求解Stokes流问题、双调和方程和断裂力学的应力应变计算。新的谱方法与稳定和高阶时间步进格式的结合将允许探索Helmholtz方程的时域积分公式和RayleighTaylor不稳定性的模拟。它还将允许在重要应用中进行实验和潜在的新现象发现,如纳米尺度的光学元,逆散射问题的解决,以及深水内波的本杰明诺方程的模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Slevinsky, Richard其他文献

Slevinsky, Richard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Slevinsky, Richard', 18)}}的其他基金

A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postdoctoral Fellowships
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postdoctoral Fellowships
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postdoctoral Fellowships
Numerical methods for highly oscillatorry integrals
高振荡积分的数值方法
  • 批准号:
    454268-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Numerical Methods for Highly Oscillatory Integrals
高振荡积分的数值方法
  • 批准号:
    410928-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
  • 批准号:
    10080509
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
Development of new method for estimating the origin of quartz artifacts by using infrared spectral analysis
开发利用红外光谱分析估计石英制品起源的新方法
  • 批准号:
    18K12565
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
  • 批准号:
    RGPIN-2017-05514
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
A New Machine Learning Method for Chemical Property Prediction Using the Spectral Signatures of Properties on Molecular Surfaces
一种利用分子表面性质的光谱特征预测化学性质的新机器学习方法
  • 批准号:
    452387-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Analysis of cell death of sputum neutrophils aiming at development of a diagnostic method for new pneumonia
痰中性粒细胞细胞死亡分析,旨在开发新型肺炎诊断方法
  • 批准号:
    26461502
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of new zooplankton observation method using linear FM signals and spectral analysis
利用线性调频信号和频谱分析开发新的浮游动物观测方法
  • 批准号:
    25630400
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了