Traffic Information Acquisition based on Robust Tracking Techniques Using Images and Sound

基于图像和声音的鲁棒跟踪技术的交通信息获取

基本信息

  • 批准号:
    16500107
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Based on the idea that a variety of information useful for realization of Intelligent Transportation Systems (ITS) can be extracted from traffic movies, a lot of research efforts have been deveted to develop vehicle tracking techniques using traffic surveillance sequences. However, because of issues in robustness, the tracking techniques are still difficult to be put to practical use. The purpose of this research is to expand the application scope of the vehicle tracking techniques by greatly enhancing the robustness of them.In the period of the research supported by Grant-In-Aid for Scientific Research, first we have established a tracking method that integrates low-level tracking process with the high-level tracking process, which enables transformation of target objects to be tracked over time in high-dimensional state space, in Bayes framework to adapt to the influence from rapid changes of lighting conditions and object's motions. By using this method, we have achieved the compati … More bleness between robustness and real-time execution of tracing.Secondly, within above-mentioned framework, recognition mechanism that functions as low-level tracking has been mainly investigated and implemented. This low-level tracking process can not only work individually as a tracker but can also work jointly with high-level tracking process to make the whole system more reliable. Additionally, (1) to keep the robustness of the system even in case of bad weather, night or occurrence of occlusion (because of overlap of vehicle on images), we have developed a method to detect the passages of vehicles based on recognizing road traffic sound taken by a stereo microphones and proved its effectiveness especially for night-image-sequences ; (2) to obtain necessary information in the situation where road-side-infrastructures are not available, we have investigated and developed a method to detect and track neighboring vehicles by using in-vehicle cameras ; (3) to support safe driving, we have developed the techniques to identify and distinguish vehicles and pedestrian at intersections.The results related to this research project have been published in several proceedings of international canferences and journals. Less
基于从交通视频中可以提取出各种对智能交通系统(ITS)实现有用的信息的思想,大量的研究工作致力于发展基于交通监控序列的车辆跟踪技术。然而,由于鲁棒性的问题,跟踪技术仍然很难投入实际使用。本研究的目的是通过提高车辆跟踪技术的鲁棒性来扩大车辆跟踪技术的应用范围,在科研资助项目的研究中,首先建立了一种低层跟踪过程与高层跟踪过程相结合的跟踪方法,使目标对象在高维状态空间中随时间的变化得到跟踪,以适应光照条件和物体运动快速变化的影响。利用这种方法,我们实现了对一个典型的计算机系统的比较, ...更多信息 其次,在上述框架下,重点研究并实现了作为底层跟踪功能的识别机制。这种低层跟踪过程既可以单独作为跟踪器工作,也可以与高层跟踪过程联合工作,使整个系统更加可靠。另外,(1)即使在恶劣天气、夜晚或发生遮挡的情况下也保持系统的鲁棒性(由于车辆在图像上的重叠),我们提出了一种基于立体声麦克风采集的道路交通声音识别的车辆通过检测方法,并证明了该方法的有效性,特别是对于夜间图像序列;(2)为了在没有道路基础设施的情况下获得必要的信息,我们研究并开发了一种通过使用车载摄像机来检测和跟踪相邻车辆的方法;(3)为保障安全驾驶,我们开发了交叉口车辆和行人的识别和区分技术,相关研究成果已在多个国际会议和期刊上发表。少

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
周波数の時間的特徴を用いた車両通過認識の評価に関する研究
利用频率时间特性评价车辆通过识别的研究
Estimating Traffic Density Using sounds of Moving Vehicles
利用移动车辆的声音估算交通密度
交差点内の車両・歩行者の挙動分析を目的とする移動物体の判別
区分移动物体,以分析十字路口车辆和行人的行为
線形判別法を用いた自動車挙動の検出と分類
使用线性判别法对车辆行为进行检测和分类
Spatiotemporal-dependent Modeling for Traffic Monitoring Movies
交通监控影片的时空相关建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Jien其他文献

Attention-Guided Spatial Transformer Networks for Fine-Grained Visual Recognition
用于细粒度视觉识别的注意力引导空间变换器网络
Controlled polymerization of renewable functional styrenes
可再生功能苯乙烯的受控聚合
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LIU Dichao;WANG Yu;KATO Jien;Kotaro Satoh
  • 通讯作者:
    Kotaro Satoh

KATO Jien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Jien', 18)}}的其他基金

Visual Event Learning with Web Resources
利用网络资源进行视觉事件学习
  • 批准号:
    26540081
  • 财政年份:
    2014
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Surroundings/Situation Recognition and Danger Detection for Active Safe Driving
环境/情境识别和危险检测,实现主动安全驾驶
  • 批准号:
    21500166
  • 财政年份:
    2009
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Road-Vehicle Cooperative System for Safe Driving Using Infra-cameras
基于红外摄像头的安全驾驶路车协同系统研究
  • 批准号:
    19500144
  • 财政年份:
    2007
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust Real-time Car Tracking Unifying Low-level and High-level Tracking In a Stochastic Framework
鲁棒的实时汽车跟踪在随机框架中统一低级和高级跟踪
  • 批准号:
    13680442
  • 财政年份:
    2001
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
REU Site: Security for Emerging Networks in Energy and Intelligent Transportation Systems
REU 网站:能源和智能交通系统新兴网络的安全
  • 批准号:
    2244371
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Cyber-physical Distributed Simulation of Intelligent Transportation Systems
智能交通系统的信息物理分布式仿真
  • 批准号:
    RGPIN-2018-06882
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/ Industrial Research Chair in Intelligent Transportation Systems
NSERC/智能交通系统工业研究主席
  • 批准号:
    548709-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Industrial Research Chairs
Cyber-physical Distributed Simulation of Intelligent Transportation Systems
智能交通系统的信息物理分布式仿真
  • 批准号:
    RGPIN-2018-06882
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/ Industrial Research Chair in Intelligent Transportation Systems
NSERC/智能交通系统工业研究主席
  • 批准号:
    548709-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Industrial Research Chairs
Learning-Based Fault-Tolerant Traffic Management Algorithms for Intelligent Transportation Systems
智能交通系统中基于学习的容错交通管理算法
  • 批准号:
    1949710
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Cyber-physical Distributed Simulation of Intelligent Transportation Systems
智能交通系统的信息物理分布式仿真
  • 批准号:
    RGPIN-2018-06882
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了