Dynamical vertex functions of many-electron systems
多电子系统的动力学顶点函数
基本信息
- 批准号:468199700
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wider research context - Our project aims at a substantial advancement in the quantum field theory description of the many-electron problem. We focus on one of the most challenging theoretical aspects: the physics of two-particle scattering processes in correlated quantum materials. In the realm of the Feynman diagrammatic these processes are described by the vertex-functions, i.e. the analog of the self-energy on the two-particle level.Level of originality/innovation - Mastering the vertex functions, similarly as it is presently possible for the self- energy, represents a pivotal step for the many-body theory of interacting fermions and for a complete understanding of the underlying physics. Further, it will significantly raise the predictive power of realistic calculations of spectroscopic and transport properties of quantum materials.Research questions/objectives - The first objective of our program is the investigation of the physical and algorithmic impact of the divergences of the irreducible vertex functions, recently discovered to occur in basic models of correlated electrons. These anomalies, associated to an underlying multivaluedness of the Luttinger-Ward functionals, challenge the current theoretical understanding in several fundamental aspects. We plan thorough studies of increasing physical complexity, designed to unveil the true role played by these divergences, hitherto understood only at a mere formal level.Our second goal deals with the effects of two-particle correlations in physical response functions: the vertex corrections. Due to their numerical complexity, these are often neglected or severely approximated. We will fill a relevant gap of the current literature, by working out the general conditions under which vertex corrections are no longer symmetry-forbidden and have to be taken into account in model and material calculations. Then, we will analyze the largely unexplored phenomenology induced by vertex corrections to dynamical susceptibilities and conductivities, calculating them within state-of-the-art many-body methods for cases of special physical interest.In the final stage of the project, we will extend the vertex formalism to systems with reduced symmetry, including also spin-orbit coupling effects and long-range ordered phases. This will allow for a full “theoretical spectroscopy” of magnetic as well as topological materials, investigated so far within weak-coupling approximations only.Methods - Our planned research will rely on advanced many-body approaches such as multi-orbital dynamical mean-field theory and its extensions and, where needed, on semi-analytic or diagrammatic calculations.Primary researcher involved - The ambitious scientific agenda of this project will be made possible by the joint expertise of the two PIs involved (Alessandro Toschi and Giorgio Sangiovanni), greatly profiting from the long-standing cooperation between their groups.
更广泛的研究背景-我们的项目旨在在多电子问题的量子场论描述方面取得实质性进展。我们专注于最具挑战性的理论方面之一:相关量子材料中双粒子散射过程的物理学。在费曼图解的范围内,这些过程由顶点函数描述,即两粒子水平上的自能的模拟。原创性/创新水平-掌握顶点函数,类似于目前可能的自能,代表着相互作用费米子的多体理论和对基本物理的完整理解的关键一步。此外,它将显著提高量子材料光谱和输运性质的实际计算的预测能力。研究问题/目标-我们计划的第一个目标是调查不可约顶点函数的发散对物理和算法的影响,最近发现这些发散出现在关联电子的基本模型中。这些反常现象,与潜在的Luttinger-Ward泛函的多值性有关,在几个基本方面挑战了目前的理论理解。我们计划对不断增加的物理复杂性进行彻底的研究,旨在揭示这些分歧所起的真正作用,到目前为止,这些分歧仅在形式层面上被理解。我们的第二个目标涉及物理响应函数中两粒子关联的影响:顶点修正。由于它们的数值复杂性,它们往往被忽略或严重逼近。我们将通过制定一般条件来填补当前文献的相关空白,在这些条件下,顶点修正不再是对称性禁止的,并且在模型和材料计算中必须被考虑在内。然后,我们将分析由顶点修正引起的动力学极化率和电导率的大部分未被探索的现象学,并用最先进的多体方法对特殊物理兴趣的情况进行计算。在项目的最后阶段,我们将把顶点形式扩展到对称性降低的系统,包括自旋-轨道耦合效应和长程有序相。这将允许一个完整的磁性材料和拓扑材料的“理论光谱”,到目前为止仅在弱耦合近似下进行研究。方法-我们计划的研究将依赖先进的多体方法,如多轨道动力学平均场理论及其扩展,并在需要时使用半解析或图表计算。主要研究人员参与-该项目雄心勃勃的科学议程将通过参与的两个PI(亚历山德罗·托斯基和乔治·桑戈瓦尼)的共同专业知识而成为可能,这将从他们小组之间的长期合作中获益良多。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Giorgio Sangiovanni其他文献
Professor Dr. Giorgio Sangiovanni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Giorgio Sangiovanni', 18)}}的其他基金
Realistic theory of electronic correlations in nanoscopic systems
纳米系统中电子关联的现实理论
- 批准号:
240207043 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Orbital, spin and charge fluctuations in layered oxide heterostructures
层状氧化物异质结构中的轨道、自旋和电荷波动
- 批准号:
229238168 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Units
Modeling non-local interaction phenomena in real materials: electrons, lattice and topology
模拟真实材料中的非局域相互作用现象:电子、晶格和拓扑
- 批准号:
471475673 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Orbifold Gromov-Witten理论研究
- 批准号:11171174
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
- 批准号:
EP/V053787/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10373650 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A large sample machine learning network analysis of vertex cortical thickness measures for high resolution definition of PTSD related cortical structure abnormalities
大样本机器学习网络分析顶点皮质厚度测量,以高分辨率定义 PTSD 相关皮质结构异常
- 批准号:
10551850 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
- 批准号:
SAPIN-2020-00039 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Individual
Vertex Classification of Ball Polyhedra
球多面体的顶点分类
- 批准号:
575751-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
- 批准号:
EP/V053728/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Modular linear differential equations and vertex operator algebras
模线性微分方程和顶点算子代数
- 批准号:
22K03249 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
New directions in vertex algebras and moonshine
顶点代数和 Moonshine 的新方向
- 批准号:
22K03264 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




