Applications of tight closure and F-singularity to algebraic geometry

紧闭包和F-奇异性在代数几何中的应用

基本信息

  • 批准号:
    16540005
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Given a pair of a variety of characteristic p and an effective divisor on it, one can associate a real number called the F-pure threshold. Since this invariant is defined as a characteristic p analog of the log canonical threshold in characteristic 0, it is desirable that F-pure thresholds are rational numbers similarly as log canonical thresholds. N.Hara studied F-pure thresholds of pairs of a nonsingular surface and an effective divisor, and proved based on Monsky's idea of p-fractals that the F-pure thresholds are rational provided that the base field is finite. When the divisor is defined by a homogeneous polynomial f (x, y), the F-pure threshold c(f) can be estimated more precisely, and we can obtain a finite list of possible value of c(f) for a fixed degree d=deg f and characteristic p. We also proved that the Monsky's function ψ_f(t) has a piecewise quadratic limit as p→∞.M.Ishida studied real fans from a viewpoint of toric geometry, as well as moduli parameter of Catanese-Ciliberto-Ishida surface. T.Kajiwara studied the theory of logarithmic abelian varieties, the relationship of tropical hypersurfaces and degeneration of projective toric varieties, and the theory of tropical toric varieties. K.-i.Watanabe studied geometric interpretation of integrally closed monomial ideals in 3 variables, multiplier ideals, and F-thresholds. K.Yoshida gave estimates of multiplicities of Stanley-Reisner rings and Buchsbaum homogeneous algebras, and studied the structure of these rings when they have minimal multiplicities.
给定一对各种特征p和它的有效除数,可以关联一个称为F纯阈值的真实的数。由于该不变量被定义为特征0中的对数正则阈值的特征p模拟,因此期望F纯阈值是与对数正则阈值类似的有理数。N.Hara研究了非奇异曲面和有效因子对的F-纯阈值,并基于Monsky的p-分形思想证明了在基域有限的条件下,F-纯阈值是有理的。当因子由齐次多项式f(x,y)定义时,F-纯阈值c(f)可以得到更精确的估计,并且对于固定的次数d=deg f和特征p,我们可以得到c(f)的可能值的有限列表.我们还证明了当p→∞时Monsky函数f(t)具有分段二次极限.以及Catanese-Ciliberto-Ishida曲面的模量参数。T.Kajiwara研究了对数阿贝尔簇的理论,热带超曲面与射影环面簇退化的关系,以及热带环面簇的理论。K.- Watanabe研究了3个变量的整闭单项理想、乘子理想和F-阈值的几何解释。K.Yoshida给出了Stanley-Reisner环和Buchsbaum齐次代数的重数估计,并研究了这些环具有最小重数时的结构。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.-i.Watanabe;S.Takagi
  • 通讯作者:
    S.Takagi
Stanley-Reisner rings with minimal multiplicity
具有最小重数的 Stanley-Reisner 环
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Terai;K.Yoshida
  • 通讯作者:
    K.Yoshida
On a generalization of test ideals
关于测试理想的概括
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    浅沼照雄;S.M.Bhatwadekar;小野田信春;尾形 庄悦;原 伸生;S.Ogata;S.Ogata;T.Kajiwara;石田 正典;石田正典;尾形 庄悦;原 伸生;S.Ogata;N.Hara;尾形庄悦;尾形庄悦;原 伸生;原 伸生
  • 通讯作者:
    原 伸生
F-thresholds and Bernstein-Sato polynomial
F 阈值和 Bernstein-Sato 多项式
Hilbert-Kunz multiplicity of three-dimensional local Hngs
三维局部 Hngs 的 Hilbert-Kunz 重数
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.-i.Watanabe;K.Yoshida
  • 通讯作者:
    K.Yoshida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HARA Nobuo其他文献

HARA Nobuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HARA Nobuo', 18)}}的其他基金

Development of property evaluation method of porous materials for performance design of separation membranes
开发用于分离膜性能设计的多孔材料性能评价方法
  • 批准号:
    17H03448
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Aspects of purely inseparable morphisms in algebraic geometry
代数几何中纯粹不可分离的态射的各个方面
  • 批准号:
    22540039
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Approach to Invariants in Commutative Algebra
交换代数中不变量的代数几何方法
  • 批准号:
    18540007
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebro-Geometric Method in Commutative Algebra
交换代数中的代数几何方法
  • 批准号:
    13640005
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了