Unramified Solutions of Inverse Galois Problems and their Applications to the Class Field Tower Problems
伽罗瓦反问题的无分支解及其在类场塔问题中的应用
基本信息
- 批准号:16540017
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Head investigator Nomura studied the existence of unramified 3-extensions over cyclic cubic fields. In particular we treated the following problem.Problem P(F,G) : For a given Galois extension F/Q and a finite group G, does there exists an unramified Galois extension M/F such that the Galois group Gal(M/F) is isomorphic to G.Let F and K be the cyclic cubic fields satisfying the certain ramification conditions. Let G_1 and G_2 be the non-abelian 3-group such that the GAP-number is [81,9] and [243,2] respectively. One of main results is stated as follows.Assume that the class number of F is divisible by 81. Then, (1) there exists an unramified extension M/K such that the Galois group Gal(M/K) is isomorphic to G_1, (2) there exists an unramified extension M/F such that the Galois group Gal(M/F) is isomorphic to G_2.We also studied the class number relation between certain cubic fields, and gave an alternative proof of the Naito's result.Investigator Hirabayashi constructed some multiple Dedekind sums and gave a relative class number formula for an imaginary abelian number field by means of such Dedekind sums. He also gave a generalization of Girstmair's formula to an imaginary abelian number field.
首席研究员野村(Nomura)研究了循环立方域上非分枝3-延拓的存在性。我们特别处理了以下问题。问题P(F,G):对于给定的伽罗瓦扩展F/Q和有限群G,是否存在使伽罗瓦群Gal(M/F)同构于G的非分形伽罗瓦扩展M/F,设F和K为满足一定分形条件的循环三次场。设G_1和G_2为非阿贝尔3群,使得gap数分别为[81,9]和[243,2]。主要结果之一如下。假设F的类数能被81整除。则,(1)存在一个使伽罗瓦群Gal(M/K)与G_1同构的非分支扩展M/K,(2)存在一个使伽罗瓦群Gal(M/F)与G_2同构的非分支扩展M/F。我们还研究了某些三次域之间的类数关系,并给出了内藤结果的另一种证明。研究者Hirabayashi构造了一些多重Dedekind和,并利用这些Dedekind和给出了一个虚阿贝尔数域的相对类数公式。他还将格斯特梅尔公式推广到一个虚阿贝尔数域。
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designs in a coset geometry Delsarte theory revisited
重温陪集几何 Delsarte 理论中的设计
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Masaaki Harada;Masaaki Kitazume and Akihiro Munemasa;内山 成憲;M.Oka;Akihiro Munemasa and Vladimir D.Tonchev;M.Oka;T.Ito
- 通讯作者:T.Ito
The shape of a tridiagonal pair
三对角对的形状
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Oka;M.;Hiroaki Terao;T.Ito and P.Algebra
- 通讯作者:T.Ito and P.Algebra
On Distributions of Multiple Access Interference for Spread Spectrum Communiction Systems Using M-Phase Spreading Sequences of Markov Chains
马尔可夫链M相扩频序列扩频通信系统多址干扰分布研究
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Shunsuke Takagi;Kei-ichi Watanabe;Izumi MiyamotoA;H.Fujisaki
- 通讯作者:H.Fujisaki
中心拡大の埋め込み問題について
关于中心扩展嵌入问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Terasoma;T.;M.Hirabayashi;H.Fujisaki;H.Fujisaki;M.Hirabayashi;H.Fujisaki;A.Nomura
- 通讯作者:A.Nomura
On Bit Error Probabilities of SSMA Communication Systems Using Spreading Sequences of Markov Chains
马尔可夫链扩频序列SSMA通信系统误码率研究
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Terasoma;T.;M.Hirabayashi;H.Fujisaki
- 通讯作者:H.Fujisaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOMURA Akito其他文献
NOMURA Akito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NOMURA Akito', 18)}}的其他基金
Research of the inverse Galois problems with restricted ramifications and their applications to the class field tower problems
有限分支伽罗瓦反问题及其在类场塔问题中的应用研究
- 批准号:
23540010 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of the inverse Galois problems with restricted ramifications and their applications
有限分支伽罗瓦反问题及其应用研究
- 批准号:
20540013 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unramified Solutions of Inverse Galois Problems and their Applications
伽罗瓦反问题的无分支解及其应用
- 批准号:
18540022 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Inverse Galois Problems with Restricted Ramifications
有限分支的逆伽罗瓦问题
- 批准号:
14540018 - 财政年份:2002
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




