Unramified Solutions of Inverse Galois Problems and their Applications to the Class Field Tower Problems

伽罗瓦反问题的无分支解及其在类场塔问题中的应用

基本信息

  • 批准号:
    16540017
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

Head investigator Nomura studied the existence of unramified 3-extensions over cyclic cubic fields. In particular we treated the following problem.Problem P(F,G) : For a given Galois extension F/Q and a finite group G, does there exists an unramified Galois extension M/F such that the Galois group Gal(M/F) is isomorphic to G.Let F and K be the cyclic cubic fields satisfying the certain ramification conditions. Let G_1 and G_2 be the non-abelian 3-group such that the GAP-number is [81,9] and [243,2] respectively. One of main results is stated as follows.Assume that the class number of F is divisible by 81. Then, (1) there exists an unramified extension M/K such that the Galois group Gal(M/K) is isomorphic to G_1, (2) there exists an unramified extension M/F such that the Galois group Gal(M/F) is isomorphic to G_2.We also studied the class number relation between certain cubic fields, and gave an alternative proof of the Naito's result.Investigator Hirabayashi constructed some multiple Dedekind sums and gave a relative class number formula for an imaginary abelian number field by means of such Dedekind sums. He also gave a generalization of Girstmair's formula to an imaginary abelian number field.
首席研究员野村(Nomura)研究了循环立方域上非分枝3-延拓的存在性。我们特别处理了以下问题。问题P(F,G):对于给定的伽罗瓦扩展F/Q和有限群G,是否存在使伽罗瓦群Gal(M/F)同构于G的非分形伽罗瓦扩展M/F,设F和K为满足一定分形条件的循环三次场。设G_1和G_2为非阿贝尔3群,使得gap数分别为[81,9]和[243,2]。主要结果之一如下。假设F的类数能被81整除。则,(1)存在一个使伽罗瓦群Gal(M/K)与G_1同构的非分支扩展M/K,(2)存在一个使伽罗瓦群Gal(M/F)与G_2同构的非分支扩展M/F。我们还研究了某些三次域之间的类数关系,并给出了内藤结果的另一种证明。研究者Hirabayashi构造了一些多重Dedekind和,并利用这些Dedekind和给出了一个虚阿贝尔数域的相对类数公式。他还将格斯特梅尔公式推广到一个虚阿贝尔数域。

项目成果

期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designs in a coset geometry Delsarte theory revisited
重温陪集几何 Delsarte 理论中的设计
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masaaki Harada;Masaaki Kitazume and Akihiro Munemasa;内山 成憲;M.Oka;Akihiro Munemasa and Vladimir D.Tonchev;M.Oka;T.Ito
  • 通讯作者:
    T.Ito
The shape of a tridiagonal pair
三对角对的形状
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oka;M.;Hiroaki Terao;T.Ito and P.Algebra
  • 通讯作者:
    T.Ito and P.Algebra
On Distributions of Multiple Access Interference for Spread Spectrum Communiction Systems Using M-Phase Spreading Sequences of Markov Chains
马尔可夫链M相扩频序列扩频通信系统多址干扰分布研究
中心拡大の埋め込み問題について
关于中心扩展嵌入问题
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terasoma;T.;M.Hirabayashi;H.Fujisaki;H.Fujisaki;M.Hirabayashi;H.Fujisaki;A.Nomura
  • 通讯作者:
    A.Nomura
On Bit Error Probabilities of SSMA Communication Systems Using Spreading Sequences of Markov Chains
马尔可夫链扩频序列SSMA通信系统误码率研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NOMURA Akito其他文献

NOMURA Akito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NOMURA Akito', 18)}}的其他基金

Research of the inverse Galois problems with restricted ramifications and their applications to the class field tower problems
有限分支伽罗瓦反问题及其在类场塔问题中的应用研究
  • 批准号:
    23540010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of the inverse Galois problems with restricted ramifications and their applications
有限分支伽罗瓦反问题及其应用研究
  • 批准号:
    20540013
  • 财政年份:
    2008
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unramified Solutions of Inverse Galois Problems and their Applications
伽罗瓦反问题的无分支解及其应用
  • 批准号:
    18540022
  • 财政年份:
    2006
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse Galois Problems with Restricted Ramifications
有限分支的逆伽​​罗瓦问题
  • 批准号:
    14540018
  • 财政年份:
    2002
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了