Piecewise Linear Representation Theory of Quantum Groups and Geometric Crystals
量子群和几何晶体的分段线性表示理论
基本信息
- 批准号:16540039
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of geometric crystal is obtained as an analogus theory on algebraic varieties to crystal bases by considering certain group actions on the vatirety, which turns out to be an analogus operator to the crystal operators. It is well-known that by the tropicalization / ultra-discretization procedure we obtain crystals from geometric crystals.The purpose of the research is to construct a geometric crystal structure on various algebraic varieties. In fact, I have succeeded to construct the geometric crystal structure on the Schubert varieties associated with Kac-Moody groups. Furthermore, I have constructed the geometric crystal structures on the affine Schubert varieties which is obtained from the translations of the extended Weyl groups. This geometric crystal possesses the following remarkable properties : it has a natural positive structure and the associated crystal is isomorphic to the so-called the limit of perfect crystals. We obtained the tropical R maps on the product of … More these geometric crystals, which is an analogus object to R-matrices. Perfect crystals are crucial objects in the study of affine type crystals and they play a central role in the theory of solvable lattice models in mathematical physics and the theory of Kirillov-Reshetikhin modules.As for the representation of affine quantum groups t roots of 1, we obtain the sufficient and necessary condition for that two evaluation representations are isomorphic to each other.The Markov trace is one of important topological invariants. From the view point of topology and representation theory, the Markov trace turns out to be an rather interesting object which we should study. In order to treat the Markov trace in the general framework, Gomi defined the Markov property and present the way to construct the Markov trace by the unified method.Shinoda succeeded in obtaining certain interesting results on relations between zeta functions and the Gel'fand Graev representations of finite reductive groups by performing the explicit calculations. Less
几何晶体理论是代数簇与晶体基的类比理论,通过考虑代数簇上的某些群作用,得到代数簇与晶体基的类比算子。众所周知,通过热带化/超离散化的方法,我们可以从几何晶体中得到晶体,本研究的目的是在各种代数簇上构造几何晶体结构。事实上,我已经成功地构造了与Kac-Moody群相关的Schubert簇的几何晶体结构。此外,我构造了仿射Schubert簇上的几何晶体结构,这些簇是由扩展Weyl群的平移得到的。这种几何晶体具有以下显着的性质:它具有自然的正结构,并且相关的晶体同构于所谓的完美晶体的极限。我们得到的热带R地图的产品 ...更多信息 这些几何晶体,这是一个类似的对象R-矩阵。理想晶体是仿射型晶体研究的重要对象,在数学物理中的可解格模型理论和Kirillov-Reshetikhin模理论中起着核心作用。我们得到了两个赋值表示同构的充要条件,马尔可夫迹是重要的拓扑表示之一,不变量从拓扑学和表示论的观点来看,马尔可夫迹是一个值得研究的有趣对象。为了处理马尔可夫迹的一般框架,五味定义的马尔可夫性质,并提出了如何构建马尔可夫迹的统一方法。筱田成功地获得了一些有趣的结果之间的关系zeta函数和Gelfand Graev表示有限约化群进行明确的计算。少
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Markov traces and the Fourier transforms
马尔可夫迹和傅里叶变换
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:末信郁也;久保富士男;Fujio Kubo;Fujio Kubo;Fujio Kubo;Masao Tsuzuki;Ken-ichi Shinoda;Toshiki Nakashima;T. Nakashima;K. Shinoda;Y. Gomi;Yasushi Gomi
- 通讯作者:Yasushi Gomi
Geometric Crystals on Schubert Varieties
舒伯特品种中的几何晶体
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Nakashima;Toshiki;T.Nakashima
- 通讯作者:T.Nakashima
Polyhedral realizations of crystal bases for modified quantum algebras of type $A$
$A$ 型修正量子代数的晶体基的多面体实现
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Nakashima;Toshiki;Hoshino;Ayumu
- 通讯作者:Ayumu
Polyhedral realizations of crystal bases for modified quantum algebras of type A
A 型修正量子代数晶体基的多面体实现
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:T.Nakashima;A.Hoshino
- 通讯作者:A.Hoshino
Geometric crystals on unipotent groups and generalized Young tableaux
单能群上的几何晶体和广义杨氏画面
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Nakashima;Toshiki
- 通讯作者:Toshiki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKASHIMA Toshiki其他文献
NAKASHIMA Toshiki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKASHIMA Toshiki', 18)}}的其他基金
Construction of tropical R maps on geometric crystals and its applications to crystal bases
几何晶体热带R图的构建及其在晶体底座上的应用
- 批准号:
22540031 - 财政年份:2010
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of affine geometric crystals and Representation theory of crystal bases
仿射几何晶体的构造与晶体基表示论
- 批准号:
19540050 - 财政年份:2007
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Representation Theory of Quantum Groups
量子群的组合表示论
- 批准号:
13640043 - 财政年份:2001
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




